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FOREWORD

The Self Learning Material (SLM) is written with the aim of providing simple and organized
study content to all the learners. The SLMs are prepared on the framework of being mutually
cohesive, internally consistent and structured as per the university’s syllabi. It is a humble
attempt to give glimpses of the various approaches and dimensions to the topic of study and

to kindle the learner’s interest to the subject

We have tried to put together information from various sources into this book that has been
written in an engaging style with interesting and relevant examples. It introduces you to the
insights of subject concepts and theories and presents them in a way that is easy to understand

and comprehend.

We always believe in continuous improvement and would periodically update the content in
the very interest of the learners. It may be added that despite enormous efforts and
coordination, there is every possibility for some omission or inadequacy in few areas or topics,

which would definitely be rectified in future.

We hope you enjoy learning from this book and the experience truly enrich your learning and

help you to advance in your career and future endeavours
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INTRODUCTION TO BLOCK-II

This block discusses about o-algebra, its monotone classes, its restrictions
and about Borel s-algebra.we study about general measures, Point mass
distributions, complete measures, restrictions and its uniqueness. We
discusses different kinds of borel measures, outer measures and its
constructions ,volume of intervals , lebesgue measure and its
transformations and also about cantor set,cantor ternary set and its
functions,different functions and arithmetic operations which we can
perform on the measurable functions.

In this block We will be learning about the devil’s staircase and seeing

problems related to it.




UNIT 8 CANTOR-LEBESGUE
FUNCTION
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8.6 Keywords
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8.1 OBJECTIVE

In this chapter we are going to learn about the cantor lebesgue functions,
its lemmas , its theorem’s and problems related on it.We study about the
completeness of a measure spaces, its definitions and see problems related
to it

8.2 INTRODUCTION

Consider the two functions ¢1, ¢2 pictured in. The function ¢
takes the constant value 3 on the interval ( 3 %) that is removed from [0,1]
in the first stage of the construction of the Cantor middle-thirds set, and is
linear on the remaining intervals. The function ¢, takes the same constant
3 0n the interval ( 3 %) but additionally is constant with values Tand1on
the two intervals that are removed in the second stage of the construction
of the Cantor set. We continue this process and define ¢3,¢4,... in asimilar
way. Each function ¢k is continuous, and is constant on each of the open

intervals that were removed at the kth stage of the construction of the




Cantor set. The following exercise shows that these functions converge

uniformly to a continuous function.
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Top left: The function 41. Top right: The function 42.

This limit function ¢ is called the Cantor—Lebesgue function or, more
picturesquely, the Devil’s staircase. If we extend ¢ to R by reflecting it
about the point x = 1 and declaring it to be zero outside of [0,2], we obtain

the continuous function ¢ .

1 2
The reflected Devil’s staircase (Cantor—Lebesgue function).

The Cantor—Lebesgue function is not Lipschitz, but it does satisfy a

weaker condition.
Exercise 1.57. Prove the following facts.
(a) Each function ¢ k is monotone increasing on the interval [0, 1], and

|d k+1(x) — @ k(x)| < 2—k for every x € [0, 1].

Notes
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(b) The functions @k converge uniformly on [0, 1], and the limit
function ¢ (x) = limk—oo ¢k (x) is continuous on [0, 1]. Moreover, ¢
is differentiable at almost every point x € [0, 1], and although ¢ is not

differentiable at all points, we have ¢~ (x) =0a.e.in [0,1]. ¢

This limit function ¢ is called the Cantor-Lebesgue function or, more
picturesquely, the Devil’ s staircase. If we extend ¢ to R by reflecting it

about the point x = 1 and declaring it to be zero outside of [0,2], we obtain

the continuous function.

8.3 LEMMA’S AND THEOREM’S

Definition 8.2. We say that a function f : R — R is Ho"lder continuous on

R with exponent « > 0 if there exists a constant C > 0 such that
VXYE R, [f)—fy)|<Clx—y|*.

Thus Lipschitz continuity on R is Ho lder continuity with exponent a =
1.

We will use the Cantor—Lebesgue function to derive some interesting
insights into the behavior of measurable sets under continuous functions.
First we show that a continuous function can map a set with zero measure

to a set with positive measure.

Lemma 8.2. The Cantor—Lebesgue function ¢ maps the Cantor set C,

which has zero measure, to a set that has positive Lebesgue measure.

Proof. If x /e C, then x belongs to one of the open intervals removed at
some stage in forming the Cantor set. Consequently #(x) is a dyadic
rational number, i.e., #(xX) = m/2" for some integers m and n. Therefore ¢
maps the complement of the Cantor set into the set of rationals in [0,1],
which is a countable set. Consequently ¢(C) includes all of the irrational
numbers in [0,1], so ¢(C) = [0,1]\Z where Z S Q. Since Z has measure
zero, it follows that ¢(C) is measurable and |¢(C)| = 1. nu




Second, we show that a continuous function need not map a measurable

set to a measurable set.

Lemma 8.3. Let ¢ be the Cantor—Lebesgue function. There exists a
measurable set E € [0,1] such that ¢(E) is not measurable.

Proof. Let N be a nonmeasurable subset of [0,1]. By replacing N with N\Q,
we may assume that N contains no rational numbers. Consequently ¢ !(N)

is contained in the Cantor set C. Since C has zero measure, monotonicity
implies that |¢ !(N)| = 0, so E = ¢ '(N) is measurable. However, since ¢ is

surjective, the image of E under ¢ is N, which is not measurable.
Check your progress

1.1) Show that if a function f : R — R is Ho"lder continuous for some

exponent a > 1, then f is constant.

8.4 COMPLETENESS OF A MEASURE_
SPACES

By definition, a set E € X is a null set for a measure pon X if E € X and
M(E) = 0. In general, an arbitrary subset A of E need not be measurable,
but if A happens to be measurable then monotonicity implies that p(A) =
0. A complete measure is one such that every subset A of every null set E
is measurable.

Complete measures are often more convenient to work with than
incomplete measures. Fortunately, if we have a incomplete measure p in
hand, there

is a way to extend p to a larger o-algebra X in such a way that the extended
measure is complete. This new extended measure p is called the

completion of W, and its construction is given in the next exercise.

Check your progress

Notes
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1.2) Let (X, X, 1) be a measure space, and let N be the collection of all p-

null sets in X:

N = {NeX:uN)=0}

Define
Y ={EUZ:EeX ZCNeN}

and prove the following statements.

@ ZXisao-algebraon X. (b) For
each setE U Z € &, define

H(E U Z) = u(E).

Then is a well-defined function on X.

(c) | is a measure on (X,X).

(d) ¢ is the unique measure on (X,X) that coincides with 1 on X.

1 is complete.

8.5 LET US SUMUP

In this unit we discussed the following
cantor lebesgue finctions
Lemma’s and theorems.

completeness of a measure spaces

8.6 KEYWORDS

Lemma- Lemma is minor, proven proposition which is used as a
stepping stone to a larger result. For that reason, it is also known as a
"helping theorem" or an "auxiliary theorem".

Theorem-A theorem is a statement that can be demonstrated to be true by
accepted mathematical operations and arguments. In general,
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a theorem is an embodiment of some general principle that makes it part
of a larger theory.

8.7 QUESTIONS FOR REVIEW

1) Let C be the Cantor set and ¢the Cantor—Lebesgue function. Define
g(x) = #(x) + x, and prove the following statements.
(a) Both g: [0,1] — [0,2] and ¢g~': [0,2] — [0,1]

are continuous, strictly increasing bijections.
1) g(C) is aclosed subset of [0,2], and |g(C)| = 1.

© Let N be a nonmeasurable subset of g(C)
(such a set exists by Problem 1.32). Then A = g '(N) is Lebesgue
measurable.

2) Each function ¢k is monotone increasing on the interval [0,1], and
|pks1(X) — ¢k(X)] < 27 for every x € [0,1].

3) The functions ¢k converge uniformly on [0,1], and the limit function
P(X) = limk_. ¢k(X) is continuous on [0,1]. Moreover, ¢ is differentiable
at almost every point x € [0,1], and although ¢ is not differentiable at all

points, we have ¢'(x) = 0 a.e. in [0,1].

4) Let Brd be the Borel o-algebra on RY, and let p be Lebesgue measure
on (R®,Brd). Since every open subset of R? is Lebesgue measurable, Brd
is contained in the s-algebra Lrd of Lebesgue measurable subsets of R
By Theorem 1.37, the o-algebra Bz constructed in 1.1 is precisely Lrd,

and ¢ is Lebesgue measurel - | on (R, Lga). <

5) Consider the J-measure as a measure on (R Brd). In this case

Bpi =P[R and &= 5 on (R%P(RY).

11
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8.8 SUGGESTED READINGS AND
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8.9 ANSWERS TO CHECK YOUR
PROGRESS

1 .Check section 8.3. For answer to check your progress 1.1

2 .Check section 9.3 for check your progress to 1.2




UNIT 9 LIMIT OF SEQUENCES OF
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9.6 keywords
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9.1 OBJECTIVE

After going through this unit, you will be able to:

e Understand whatsequence and series of functionis
Explainuniformconvergence
In this unit we discuss about limit of sequences ,limit superior and limit

inferior.

9.2 INTRODUCTION

The study of advanced calculus is based on the thorough understanding of

sequences and real numbers. There are various kinds of sequences such as
bounded and monotonic sequences. Asequence (a,) of real numbers is said
to be bounded abrove if there exists a real number M eR such that an<M
for every neN. A sequence (a ) is said to be bo:mded below if there exists a
real number meR such that m<an for every neN. A sequence (a) is said to
be bounded if it isboth bounded above and bounded below. A sequence (a,)
is monotonic increasingif

a +1>a for all n € N. The sequence is strictlymonotonicincreasing if we have
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>in the definition. Monotonic decreasing sequences are defined
similarly.

The limit of a sequence is the value that the terms of a sequence “tend
to”. If sucha limit exists, the sequence is called convergent. Asequence which
does not converge is said to be divergent. The limit of a sequence is said to
be the fundamental notion on which the whole of analysis ultimately rests.
Asequence is said to be convergent if it approaches some limit. A sequence
convergeswhenit keepsgettingcloserandclosertoacertainvalue.Asequence
{fn} of functions is said to converge point wise on a set S to a limit functionf, if
foreachx e S andfor each £ > 0 there exists an N (depending on x and €) such
that, %2fn(x) —f(x)¥2<
g, foralln>N. Asequence of real valued functions <fn>defined onaset S is
said to converge uniformlyto a real valued functionfon Siffore >03m e N
suchthat

[fn(x) —f(x)| <en>mandx € S

In this unit, you will studyabout sequences and series of function,

uniform convergence indetail.

In mathematics, the limit of a sequence of sets A1, Ao, ... (subsets of a

common set X) is a set whose elements are determined by the sequence
in either of two equivalent ways: (1) by upper and lower bounds on the
sequence that converge monotonically to the same set (analogous to
convergence of real-valued sequences) and (2) by convergence of a

sequence of indicator functions which are themselves real-valued. As is

the case with sequences of other objects, convergence is not necessary or

even usual.

More generally, again analogous to real-valued sequences, the less
restrictive limit infimum and limit supremum of a set sequence always
exist and can be used to determine convergence: the limit exists if the
limit infimum and limit supremum are identical. (See below). Such set

limits are essential in measure theory and probability.




It is a common misconception that the limits infimum and supremum
described here involve sets of accumulation points, that is, sets of x =
limk_..xk, where each xk is in some Ank. This is only true if
convergence is determined by the discrete metric (that is, xn — x if there

is N such that xn= x for all n > N).

9.3 SEQUENCES AND SERIES OF,
FUNCTIONS

A sequence is a function whose domain is the set of natural numbers. If the
codomain istheset' | of real numbers, it is called a real sequence; if it is theset
| of complexnumbers, it is called a complex sequence and likewise if it is a set

of polynomials, it is a sequence of polynomials.
The image of the numbers 1, 2, 3, ... are called the first, second, third
terms of thesequence, respectively.

Thusa real sequence can be conceived as a collection of numbers so that
to every natural number there is a unique member of that collection. If the

natural number is n, the corresponding number is denoted by x,, or y,, or z,, or

u, etc., and is called the nth term of the sequence. The sequence is denoted

by{xn}.

=

Thus x, = N

Is a sequence whose 1st, 2nd, 3rd terms are respectively 1,

1 , 1 . This sequenee is called the harmonic sequence.

23
Another example of a sequence is y, = (— 1)". The first few terms of the
sequenceare {~1,1,-1,1, ..}

The sequence Z,, = 5 is also a sequence, each of its term being 5.

Such a sequence is called a constant sequence.

Bounded and Unbounded Sequences

A sequence {x,} is said to be boundedabove if all its terms are less than or

Notes

15
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equal to areal number, i.e., there exists K € I suchthatx,<Kforalln e

As for example, the sequence

is bounded above since 1
o g
5n#l
< 1foralln 3n™
€ | 1, thesequence {5n_+]}
2n2

is bounded above since

< 3 forall n, but the

sequence < {n?} is not bounded above sincethereexists no suchreal number
K so that n?< K for all n. In fact it is easy to observe that for every real

number K there is an n such that n? > K. Such a sequence as above is called

an unbounded sequence.

A sequence {x,} is said to be bounded below if all its terms are
greater than or equal to a real number, i.e., there exists K elsuch that x, > k

foralln e

.. The sequence

is ﬁ?%}mded below since
n

for all n. The sequence

S5 |-
v
o

{_5n+ J} is also bounded below since

3n®2
for all n. The sgﬁr%elﬁib {(-

16




Notes

z1)"5} is bounded below since (-1)"5 > -5 for all n €, but the sequence
{(~2)"}is not bounded below since there is no such real number k for which
k< (- 2)". Indeed, if K is a negative real number, there always exists, an (odd)

integern such that (— 2)" <k.

A sequence is said to be bounded if it is bounded both above and

below, i.e., if there exist K, k e’such that k < x, <K forall n € N.

The numbers K and k are called respectively an upper bound and a
lower bound of the sequence {x,,}. Note that if a sequence {x,} has an upper
bound, it has many upper bounds; similarly if a sequence {x,,} has a lower

bound, ithas

1 n
many lower bounds. For example, for the sequence {(h . J)J% as 3
n

isan

upper bound, any real number greater than 3 is also an upper bound.
Monotone Sequence
A sequence {x,} is said to be monotone increasing if x, < x, , ; for every n
l; the sequence is called strictly increasing if x,, < x,, , ; foreveryn e_.
Clearly the sequence {n?} is monotone (strictly) increasing since n? < (n +
1)? always.
The sequence {(— 2)"} is not monotone increasing since (— 2)* </ (- 2)°.
A sequence {x,} is said to be monotone decreasing if x, ; ;1 < x,, for

every n

€ ; the sequence is called strictly decreasing if X, , 1 < X,, for every n

The sequence

is monotone (strictly) decreasingas !
{W'Tl} oY
1 n
1

17
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for every n. The sequence {-n%} is strictly decreasing

i )

—(n + 1)< — n®but the sequence

IS not monotone or strictly decreasing

4 3
“(-3) <a)
2 2
Convergent Sequence

A very natural inquiry about a sequence {x,} is whether the terms x,, come

close to any real number when n is very very large. This is what is known

as the convergence of a sequence.
Definition: Asequence{x,} is said to converge to a real number | if for every

€

> 0, there exists ny € such that

x,—l|<e foreveryn>n
n y 0

The number I is called limit of the sequence {x,}.

The fact that {x } conyerges to | is expressed symbolically by lim x, =
l.

oo

n

A sequence {x,} is called convergent if it converges to a

limit |. A sequence which converges to zero is called a null

sequence.
Thefollowingfactsfollowreadilyfromthe
definition:
Fact 1: A sequence may or may not

converge.

Fact2 : Ifasequence is convergent, it converges to a unique limit,

i.e., it cannotconvergeto twodifferentlimits.

Fact 3 : Everyconvergent sequence is always bounded, but not
18




conversely.

Proof:  Let{x,} beaconvergentsequence with limitl. Thenforagiven ¢

(> 0) =1, say, there exists a positive integer ny such that

| X, — 1< forall nx=ng
e, -1<x,<I+1 forall n>
No

Fact 4 : A monotone increasing sequence bounded above is always

convergent and converges to its least upper bound.

Fact 5 : A monotone decreasing sequence bounded below is always

convergent and converges to its greatest lower bound.

Fact 6 : Every constant sequence is

convergent. Let L =min {X, X, ..., X, 0

[1]-1} € |

and U =max {X1, X9, .., X, | 1| +1} € | 0
then L<x,<U forall n. Hence{x,}ina
bounded sequence.

But the converse of this theorem is not true.

For example, the sequence {1 + (-1)"} is bounded but it does not
converges to anyfinite limit. Ifthe sequenceis {0,2,0,2, ......c.cccceevrvenenn }
then its lower boundis 0 and
upper bound is 2.

Cauchy's Criterion of Convergence

Since proof of convergence of a sequence requires determination of the
limit, proving convergence is not always easy. Cauchy therefore provided an

alternative way to prove convergence of a sequence, called Cauchy's criterion

which avoids the determination of the limit. This maybe stated as follows:

A sequence {x,} is convergent iff, for every ¢ > 0, there exists ny €

,usuallydependingon g, such that

| Xm—Xn|<e€ forall m, n>n,.

Notes
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or equivalently, | X, , ,—Xp[<e foralln
>ny,p=0,123,..
1
The s%q%;ence
n
———|<£
+

IS convergent since

1 1
n n
pif
<g
n{h
“<e i.e., if
n
1
,l.e., ifn>1,i.e., ifa>n “<e —b—
€ n nfn
= 1 le |
SR
(Obs{rﬂ/e that n >
-1 —=|<e& )
n“p n
+1=n> 1 = =
<g=

Example 4.1: Show that the sequence {x,} is convergent when

1 1 1

+—+—+x. =%
'EE n n
Solution: Observe

1 . 11 1
1.2.3.00.n - 2nt
n!

Form>n

20




—>0asn— o

Hence {x,} is convergent.

Algebra of Limits

[LLNE

1 .
‘(n+ oyl 2T Tm

Notes

1

2ml

The followng result is of immense importance in evaluation of limits.

Theorem 4.1: If lim x, = | and lim y, = m, then

—3o0 —oo
n n

O lim{X,yn }=limx, limyn=1+m.
—oo —roo

—30o0

n n n
M lim{x, yn }=lim x, limy
—roa —yo0 —oo
=l-m.
n n n

@) lim{X,yn}=limx, limy,=1.m

—oo

X
™ lim™
—c0
-n yn
=n = e —
limy, m e

if m=0, provided the above limits exist.

21




Notes

Anotherresultplaysa dominantrole in manysituations. This is the so called

sandwich theorem stated as follows:

Theorem 4.2: (a) If x, <y, foralln € 1, then lim x, <

—oo —00

limyy,.

N—co

(b) If x, <y, <z,and lim X,

=1lim z,

=1, then limy, =1.

—oo
n

The proofs of the above theorems are outside the scope of this text.

Example 4.2: Show that the sequence {M} is
3n" 2
convergent.
Solution: Since - 4<
9, 6n -4
<6n+9.0r 2n+3_ 2 2(3n
~2)<3(2n+3) 32 3
or
Hence the sequence {M} is bounded
3n" 2
below.

Further taking, x = 2n 3 , Weobserve
n 3n 2

2n+3 2(n+ 1} 3
3n2 3(n*t 1)2

22




@n 3)£3n- 1) @n5)(3n

— 2)+

I.e., X, +1 <X, forall n.

{2n+3}
- 3n" 2 6n% 11r 3- 6n%11n40

(3m2) (3n")

forall n

Thus convergent.

being monotone decreasing and bounded

below is

Divergent and Oscillatory Sequences
A sequence may be such that its terms become successively larger and
larger, ultimately exceeding any big number. Such a sequence is said to
diverge to

+c0. Ontheotherhand, asequencemayhavedecreasingterms so thatultimately
it becomes smaller than any negative but numerically large real number.
Such a sequence is said to diverge to — oo. Such sequences are also possible
the terms of which do not approach any definite real number nor do exceed
any large positive real number or recede any arbitrary negative number.
These are nothing but oscillatory sequences. The formal definitions go as

follows:

Definition: A sequence {X,} is said to diverge to + « if for every large G

>0, thereexistsny € | such that

X, = G for all n > n,,.

The fact {x } diyerges to oo is expressed symbolically by lim x, =

.,

Notes

13

@n-2) G 1)

23
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A sequence {x,} is said to diverge to — « if for every large G >0,

there exists ny € | | such that
—G forall n>n,.

This is expressed symbolically by lim x, = — oo.

n

A non-constant sequence which is bounded and not convergent is a
finitely oscillatory sequence and a non-constant sequence which is
unbounded and not convergent is an infinitely oscillatory sequence. For
example, the sequence x, = 5

— (= 1)"2 is a finitely oscillatory sequence but the sequence y, = (—2)"is

an infinitelyoscillatorysequence.

Theorem 4.3: If {x } be a sequence such that lim

an

I where 0 <1< 1, then

n

—ree n Xn

qthe sequence {x }is a null sequence, i.e., limx, = 0.
—oo

n

Proof: Beyond the scope of this book.

Xn

Example 4.3:Prove that lim
—soo

= 0 for every real value of x.

Xn
Solution: Here x =
|_I3 n

X1 |D
“lnd

Xml

n




+1

X n
and Xp 1= ? )
nt
- Ax]
n4
as n— ooforall real value of x.
li Xl
n—ee Xn
p—
. —yoo
Hence lim éT
n n
Xn
Example 4.4: Prove that lim  —=
—oo
non
. n+1
Oif|x|<1.
n4
- X n
Solution:Here x =7, —
and X,41 = X
X M _n
Fd | _|xm | x| — x|
[ Xo| |N+ Tyl In+ | ol
lim
1
= | x| —
1 +
1 n
n
0 if |x<1. =

—|x|asn —e

Notes
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When x = 1, the given sequence is a harmonic

sequence which converges to zer(e1)"

as n — oo and when x = — 1, the givensequence is as

n — oo,

N which converges to zero

n

ﬂgnee= lim X
n n
9.4 LIMIT SUPERIOR AND LIMIT
INFERIOR
Definition: If (an) is a bounded sequence, then
the limit superior of (an) is a real

number X* denoted lim supn—ooan=x* such

that Ve >0 there exists an NEN such that if n=N then
an<xx+e and there are infinitely many terms of
an in Ve (xx). Similarly, the 1limit inferior is a
real number X% denoted lim infan=x%* such that Ve >0
there exists an NeN such that if n=N then

X*k—€ <ah and there are infinitely many terms of an in

Ve (xx).

Let's first look at the limit superior of a sequence:




Limit Superior

X- € X+E
P ] ~
— 1 -
X At most a finite number of terms of (a»)
LY
I

Infinitely many terms of (a-)

From the definition of the limit superior of a bounded sequence, then for

all e >0 there exists an NeN such that if n>N then an<xx+e .
Therefore, given some positive € we can find a natural number N such
that all successive terms an are less than xx+e . Therefore, for finite first

few terms up until N it is possible that xx+e <an but since there are only
a finite number of terms for which this can happen, it follows that there

are only a finite number of terms an such that xx+e <an forany e >0.

Limit Inferior

x

X-E X+E
e ] ~
T ' o
Kt
( Infinitely many terms of (a») )

At most a finite number of terms of (a.)

The limit superior of a sequence is analogous. For all € >0 there exists
an NeN such that if n>N then x* —e <an. Therefore, given some
positive e we can find a natural number N such that all successive
terms an are greater than x> —e . Therefore, for the finite first fewterms

up until N itis possible that an <x —e but since there are only a finite
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number of terms for which this can happen, it follows that there are

only a finite number of terms an such that an<xXxkx—e.

Theorem 1: Let (xn) be a bounded sequence. The following

statements are equivalent:

a) Xk =lim supxn.
b) If A={a:ais anaccumulation pointof(xn).} then x%=supA.

c) IT  B={x:x<xn foratmostfinitelymanyneN.} then x%=infB.

Proof Let (Xn) be a bounded sequence of real numbers.

a)=b)

Let x*=Ilim supxn, and let s=supA.

We ultimately want to show that Xx=s. First note

that X* is an accumulation point of the

sequence (Xn) since Ve >0, by the definition of the limit
superior, Ve (x%¥) contains infinitely many terms of (Xxn)
and eventually for some NEN if n>=N then all successive
terms Xn are contained in Ve (x¥).

Therefore X* €A and so X*<s=supAby thedefinition

that s is the supremum of A.




Notes

. Now we will show that it is not possible that

x¥<s which will force x#=s.

. Suppose  that xx<s. Then it follows

that s—xx>0 and so s—-x%2>0. Let e =s-Xxx2.

. Now since s=supA (as areminder A is the

set of accumulation points of the sequence (xn)), then it follows that

since s—-x*2<s that there exists an accumulation point a€A such

that s-xx2<a<s. By the definition of an accumulation point of a

sequence (xn) there exists a subsequence of (xn), call it (xnk) such

that Ve >0 and for all NEN there exists an n>N such that xn is in Ve a.
Lete 1=min{a-s-xx2,s-a}. Then there exists infinitely many terms

of (xn) in Ve 1(a).

4 ¥ N S h
L™ 1 - - g
L []
(s-x")/2
al
o But this is a contradiction to the fact

that x>k =lim supxn since then there exists infinitely many terms to the

29
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right of xx+e , in other words, there does not exist an NeN such
that Yn>N then xn<xx+e . Thus it cannot be that xx<s and

SO X¥=S=SUpA.

. b)=c). Consider the
setB={x:x<xnforatmostfinitelymanyneN..Noticethatforalle >0we
have that (xx+e )€B since there are only a finite number of

terms xn such that xx+e <xn. Thus there are an infinite number of
terms xnsuch that xx-e <xn<xx, and thus Ye >0, (xx-€ )¢B.

Since xx=supA it follows that then xx=supA=infB.

Theorem. Let {Ai}{Ai} be a sequence of sets
with ieZ+={1,2,...}i€Z+={1,2,...}. Then

1. for 11 ranging over all infinite subsets of Z+7+,

lim
supAi=UINie IAi,lim
sup[/f{ﬁAi:UlﬂiE 1A,

2. for Il ranging over all subsets of Z+Z+ with finite compliment,

lim
infAi=UINie 1A lim
infl/olAi=UINiE 1AI,



http://mathworld.wolfram.com/Theorem.html
http://planetmath.org/infinite

3. lim infAiclim supAilim inf/0}AiSlim supi/oiAi.
Proof.

1. We need to show, for Il ranging over all infinite subsets of Z+7+,

UlNnie IAi=oNn=1cUi=nAk.UINi€ IAi=Nn=1c0Ui=nxAk.

Let xx be an element of the LHS, the left hand side of Equation (1).
Then xe Nie 1Aixe Ni€ 1Ai for some infinite subset ICZ+ICZ+.
Certainly, xe Uwi=1Aix€ Ui=1w0Ai. Now,

suppose X€ Uooi=kAix€ Ui=kwoAi. Since Il is infinite, we can find
an l€ lle | such that I>kI>k. Being a member of 11, we have

that xe AlCUwi=k+1Aix€ AlCUi=k+1wAi. By induction, we
have x€ Uwi=nAix€ Ui=nooAi for all n€ Z+ne Z+. Thus xx is an

element of the RHS. This proves one side of the inclusion (S<) in (1).

To show the other inclusion, let xx be an element of the RHS.
S0 X€ Uwi=nAix€ Ui=nowoAi for all n€ Z+n€ Z+ In Uwci=1AiUi=100Al,
pick the least element nOnO such that xe AnOxe An0. Next,

in Uooi=n0+1AiUi=n0+1w0Ai, pick the least nlnl such
that x€ Anlxe Anl. Then the set I={n0,n1,...}1={n0,n1,...} fulfills the

requirement X€ Ni€ IAixe Ni€ 1Ai, showing the other inclusion (22).

2. Here we have to show, forllranging over all subsets
of Z+7+ with Z+—1Z+-1 finite,

UlNie TIAi=ooUn=1oNi=nAk.UINi€ lAi=Un=100Ni=
noAk.
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Suppose first that xx is an element of the LHS so

that xe Nie IAixe Ni€ IAi for some II with Z+-1Z+-1 finite. Let nOn0 be
a upper bound of the finite set Z+—1Z+-1 such that for

any n€ Z+—In€ Z+-I, n<nOn<n0. This means that any m>n0m>n0, we
have me Ime I. Therefore, Xx€ Nowi=n0Aix€ Ni=n0cAi and xx is an
element of the RHS.

Next, suppose xx is an element of the RHS so

that x€ Nook=nAkx€ Nk=ncwAk for some nn. Then the

set [={n0,n0+1,...}I={n0,n0+1,...} is a subset of Z+Z+ with
finite complement that does the job for the LHS.

3. The set of all subsets (of Z+Z+) with finite complement is a subset of
the set of all infinite subsets. The third assertion is now clear from the

previous two propositions. QED

Corollary. If {Ai}{Ai} is a decreasing sequence of sets, then

lim infAi=lim
supAi=limAi=NAi.lim
infl/0}Ai=lim

sup/oiAi=lim 0} Ai=NAI.

Similarly, if {Ai}{Ai} is an increasing sequence of sets, then

lim infAi=lim
supAi=limAi=UAi.lim
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inf/0lAi=lim

supl /A=l Ai=UAI.

Proof. We shall only show the case when we have a descending chain of
sets, since the other case is completely analogous.

Let A12A22...A12A22... be a descending chain of sets.

Set A=Nwi=1AiA=Ni=1oAi. We shall show that

lim supAi=lim
infAi=limAi=A.lim
sup/oiAi=lim
inf/0/AI=limifojAi=A.

First, by the definition of of a sequence of sets:

lim
supAi=oonn=1coVi=nAk=conn=1An=A.lin

supi/ohi=Nn=1eoUi=noe Ak=Nn=1e0An=A.

Now, by Assertion 3oftheabove Theorem, lim infAi<lim supAi=Alim
infl/0lAiClim sup[i(}}AiZA, so we only need to show that A<lim
infAiAClim inf/0}Ai. But this is immediate from the definition of AA,
being the intersection of all AiAi with subscripts iitaking on all values

of Z+7+. Its complement is the empty set, clearly finite. Having shown
both the existence and equality of the and of the AiAi’s, we conclude that

the limit of AiAi’s exist as well and it is equal to AA.

Check your progress

1.Example Calculate lim sup an and lim inf an for an = (=1)n(n + 5)/n.
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9.5 LET US SUM UP

In this unit we discussed the following
® Limit of sequence of sets

® Limit superior and limit inferior

9.6 KEYWORDS

limit superior The limit superior of is the smallest real number such
that, for any positive real number , there exists a natural number such
that for all . In other words, any number larger than the limit superior is

an eventual upper bound for the sequence.

Limit inferior The limit inferior of is the largest real number such that,
for any positive real number , there exists a natural number such that for
all . In other words, any number below the limit inferior is an eventual

lower bound for the sequence

9.7 QUESTIONS FOR REVIEW

1.Example Calculate lim sup an and lim inf an for an = (=1)nn/(n + 8).

9.8 SUGGESTED READINGS AND
REFERENCES
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Fundamentals of Real Analysis, S K. Berberian, Springer.
An introduction to measure theory Terence Tao

Measure Theory Authors: Bogachev, Vladimir |
Chovanec Ferdinand. Cantor sets. Sci. Military J. 2010
Christopher Shaver. An exploration of the cantor set. Rose-Hulman
Undergraduate Mathematics Journal.

Dauben Joseph Warren, Corinthians I. Georg cantor: The battle for
transfinite set theory. American Mathematical Society.

Su Francis E, et al. Devil’s staircase. Math Fun Facts.
http://www.math.hmc.edu/funfacts, http://www.math.hmc.edu/funfacts
Amir D. Aczel, A Strange Wilderness the Lives of the Great
Mathematicians, Sterling Publishing Co. 2011.

Planetmath.org
Proofwiki.Org

9.9ANSWERS TO CHECK YOUR_
PROGRESS

1.Solution

Define avn = sup {ak |k 2 n}. Then

an =sup €-1)n(n + 5)/n, (-1)n+1(n + 6)/(n + 1), . . .€= (n+5)/n forn
even, and(n+6)/(n+1) for n odd

— Jasn—oo,

Therefore lim sup an = 1. Similarly lim infan =—1.
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UNIT 10 MEASURABLE FUNCTIONS
THEOREMS

STRUCTURE

10.1 Objectives

10.2 Introduction

10.3 Measurable Functions
10.3.1 Properties of Measurable Functions
10.3.2Approximation of Measurable Functions by

Sequence of Simple Functions

10.3.3Measurable Functions as nearly Continuous Functions

10.4 Egoroff’s Theorem

10.5 Lusin’s Theorem

10.6 Let us sumup

10.7 Key Words

10.8 Questions for Review

10.9 Suggested Readings and References

10.10 Answers to Check Your Progress Questions

10.1 OBJECTIVES

Aftergoingthroughthisunit, you will be ableto:
o Understand measurablefunctions
o ExplainEgoroft’s theorem

° DiscussLusin’s theorem

10.2 INTRODUCTION

Measurable functions are functions that we can integrate with respect to
measures in muchthesamewaythatcontinuousfunctionscan beintegrated*‘dx”.
Recall that the Riemann integral of a continuous function f over a bounded
interval is defined as a limit of sums of lengths of subintervals times values of f

onthesubintervals. Themeasureofa setgeneralizesthelengthwhileelements of




the o-field generalize the intervals. Recall that a real-valued function is
continuous if and only if the inverse image of every open set is open. This
generalizes to the inverse image of everymeasurableset beingmeasurable.
In other words we can say that , a measurable function is a function
between two measurablespaces such that the preimage of any measurable set is
measurable, analogously to the definition that a function between
topological spaces is continuous if the preimage of each open set is open.
In real analysis, measurable functions are used in the definition of the
Lebesgue integral. In probability theory, a measurable function on a
probabilityspace is known as a randomvariable.
In this unit, you will studyabout measurable functions, Egoroff’s theorem and

Lusin’stheorem in detail

10.3 MEASURABLE FUNCTIONS

Suppose X be a set and U be a c-algebra on X.
Definition: The pair (X, U) is called a measurable space.
Definition: Let f be a function defined on a measurable space (X, U), with
values in the extended real number system. The function f is called measurable
if the set {x: f(x) > a} is measurable for everyreal a.
Theorem 10.1: The conditions given below are equivalent:

1. {x:f(x)>a} is measurable for everyreal a.

2. {x:f(x)>a} ismeasurable for everyreal a.

3. {x:f(x)<a} ismeasurable for everyreal a.

4. {x:f(x)<a} ismeasurable for everyreal a.

Proof: The statement follows the equalities,
” 1
1.{x:f(x)>a}=|| {x:f(x)>a-}

n=1

S|

2.{x:f(x)<a}=X

\{x:f(x)>a}

Notes

37




Notes

38

3.{xf(x)<a}= L{x:fﬁe)<a+}
n=1
4. {x: f(x)>a}=X\{x:f(x)<a}
Theorem 10.2: Let f (n) be a sequence of measurable functions. For x € X,
put
g(x) = Sup f (%),

n

(neN)

h(X) = limsup f, (x)
Then g and h are measurable.

Proof: Here, {X: g (x) <a}=| {x:f.(x)<a}

n=1

Now as the Left hand side is measurable, it follows that the Right hand

side is measurable too. The same proof works for inf. Now,

h(x) =infg
(X), where g
(x) = sup f, (x)

m n>m

Theorem 10.3: Let f and g be measurable real valued functions defined on X.
Let

F be a real and continuous function on R?. Set h(x) = F (f(x),
9(x))
(x € X). Then, h is measurable.

Proof: Suppose G = {(u, v): F(u, v) > a}.Then G is open subset of R?, and

0

hence G =

O 1., where (1) is a sequence of open intervals, | = {(u,v): a<u <
n n n
n=1

b,c<v<d}.
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The sets {x: a

<f(x) <b } and {x: (f(x), g(x)) e | }={ x:a<f(X)<b }n
{X: c<g(x)<d } are measurable.

Hence, the same holds for

o0

{x:h() > aj={x: (f(x), g(x)) € G }= L {x: (f(x), 9()) € I }

a n

n=1

Corollary: Let f and g be measurable. Then, the followingfunctions are

measurable:

f+g0
. fg

3.|f]
flg (ifg=0)
max{f, g}, min{f, g}
since, max{f, g}=1/2(f+ g+ | f—g|) and min{f, g}=1/2(f+ g — | f -
o])2
Definition: Let E be a measurable set and f be a function defined on E. Then f
is said to be measurable (Lebesgue function) if for anyreal o, any one of the
following fourconditionsis satisfied:
{x]f(x) > o} is measurable.
{x|f(xX) > o} is measurable.
{Xx|f(X) < o} is measurable.
{x|f(xX) < o} is measurable.
We will first prove that the above four conditions are equivalent.
(1) < (4): Since,
{X[f(X)>a} = {x|f(X) < a}°
and also we know that complement of ameasurable set is measurable,
therefore (1)=(4) and conversely.
(2) < (3): Similarlysince (2) and (3) are complement of each other, (3)

is measurable if (2) is measurableand conversely.
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(1) < (2): Now, it is sufficient to prove that (1)=(2) and conversely. Firstly,
we show that (2)=(1).

The set {x | f(X) > o} is given to be measurable. Now,
X[ fX)>a} =0 {X|f(X) > o+ 1/n}
n=1

Butby(2), {x|f(X)> o+ 1/n} ismeasurableand we know that countable
union of measurablesets is measurable. Hence, {x |f(X)> o} ismeasurablewhich
impliesthat (2)=(1). Conversely, let (1) holds. Wehave,

{(X[f(xX) > a} =U {Xf(x)>a—1/n}
n=1

Theset {x|f(x)>a— 1/n} ismeasurable by(1). Moreover, intersection
of measurable sets isalso measurable. Hence, {x| f(x)> a.} is also measurable.
Thus (1)=(2).

Hence, the four conditions are equivalent.

Lemma: If ais an extendedrealnumberthen, the abovefourconditionsimply
that {x| f(x) = o} isalso measurable.

Proof: Let o be a real number, then {x | f(X) = a} = {x | f(X) > a}{x | f(X)
<

o}.

Since {x | f(x) > a} and {x | f(x) < o} are measurable by conditions
(2) and (4), the set {x | f(x) = a.} is measurable being the intersection of
measurable sets.

Let, o = +o0. Then,

(X 1(x) = 0}=

ﬁ{x|f(x)2n}

which is measurablebythecondition(2)andbecausetheintersectionof
measurable sets ismeasurable.

Similarlywhen o = —oo, then {x | f(x) = —0}=
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again measurable by condition (4).

Hence proved.

10.3.1 Properties of Measurable Functions

O {x | f(x) <—n}, which is

Theset {x|f(x)> o} is inverse image of (a., o], where c.is real. Inthe same
way, the sets {x| f(x) > a.}, {x| f(x) < ac}and {x | f(X) € o} are inverse images
of [a,
o], [-o0, ar) and [—o0, o] respectively. Hence, we can also define a
measurable function asfollows.

Afunction f defined on ameasurable set E is said to be measurable if

for anyreal o.any one of the four conditions is satisfied:

The inverse image (., oo] of the half-open interval (a., o] is measurable.
For every real a, the inverse image f'[a, o] of the closed interval
[a, o] is measurable.

Theinverseimagef'[—oo, o) of thehalfopeninterval[—oo, o) ismeasurable.
. The inverse image f'[—o0, o] of the closed interval [—oo, o] is measurable.

Notes:
A necessary and sufficient condition for measurability is that, {x | a < f(x) < b}

should be measurable for all a, b [including the case a = —o0, b =-+<0], as anyset
of this form can be written as the intersection of two sets, {x| f(x)>a} N {X|
f(x) <b}.

If f is measurable, each of these is measurable and so is {x | a < f(x) < b}.
Conversely any set of the form occurring in the definition can easily be
expressed in terms of the sets of the form {x | a <f(x) < b}.

As (a, ) is an open set, we can define a measurable function as a function f
defined on a measurable set E, for which for every open set G in the real
number system, f-'(G) is a measurable set.

Definition: Characteristic function of a set E is defined by,

x (X) =
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E 0
ifx eE

ifxeE

This is also known as indicator function.

Theorem10.4: Foranyreal candtwo measurablerealvaluedfunctionsf, gthe

four functions f + ¢, cf, f+ g and fg are measurable.

Proof: Wehave that f isa measurable function and c is anyreal number. Then

for anyreal number o,

{X]f(X)+c>a}={x|f(X)>a—c}.

But, {x | f(X) > o — ¢} is measurable by the condition (1) of the definition.
Hence {x | f(x) + ¢ > a} and thus f(x) + ¢ is measurable.

Now, considerthefunction cf. When c =0, cfis theconstantfunction 0 and
hence is measurable since, everyconstant function is continuous and so
measurable. When ¢ > 0, we have {x | cf(X) > a} = {x | f(X) > a/c} = f(a/C,
o], and so measurable. When ¢ < 0, we have {x | cf(x) > r} = {x | f(x) <
r/c}, and so measurable.

Now, if f and g are two measurable real valued functions defined on
the same domain, we will show that f + g is measurable. For this, it is
sufficient to show that the set {x | f(x) + g(x) > o} is measurable.

If f(X) + g(x) > a, then f(x) > o — g(x) and there is a rational number r such

that,

a—g(x) <r<f(x)
Since the functions f and g are measurable, the sets {x | f(x) > r} and
{X|9(X)>o.—r} are measurable. Hence, their intersection, S = {x| f(x) > r}
N
{X]g9(X)> o —r} is also measurable.

It can be shown that, {x | f(x) + g(X) > a} = U{S

| ris rational}.
As the set of rationals, is countable and countable union of measurable sets

is measurable, therefore the set U{ S | r is rational} and hence, {X |




Notes

f(x)
+g(x) > a}is measurable which establishes that f(x) + g(x) is measurable.
Fromthispartit followsthat f— g =f+(—g) is alsomeasurable, sincewhen
g ismeasurable(—g) isalsomeasurable. Next, we consider fg. Themeasurability

of fg followsfromthe identity,

=" [ (1

2

L g)f-f2- 92], if we prove that f 2is measurable when f is

measurable. So, it is sufficientto provethat, {x € E|f4(x)> o}, whereais a
real number, ismeasurable.

Let, o be a negative real number. Then, the set {x | f%X) > a}=E
(domain of the measurable function f). But, E is measurablebythedefinition of
f. Hence{x
| f%(X) > o} is measurable when a < 0.

Now let a. > 0, then {x | f2(X) > a} = {x | f(X) > Jo
Ja ok
Pu X f(x) < -

Since f is measurable, it follows from this equality that {x | f2(x) > a}
is measurable for a. > 0. Hence, f2is also measurable when f is measurable.
Therefore, the theorem follows from the above identity, since measurability of f
and g imply the measurabilityoff+g.

From this we can also conclude that f /g (g # 0) is also measurable.
Theorem 10.5: If f is measurable, then | f | is also measurable.

Proof: It is sufficient to prove the measurability of the set,

{x:]f(X) | > a}, where a is any real number.

If o <0, then {x: | f(X)| > a}=E (domain of )

But E is assumed to the measurable. Hence {x: | f(X) | > a} = {x : | f(X) |
>a} U x| f(X)<—-a}

The right hand side of the equality is measurable since f is measurable.

Hence, {x: | f(X) | > a} is also measurable.
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This proves the theorem.

Theorem 10.6: Let {f,

)

be a sequence of measurable functions. Then, sup{f,
f,.. ) inf{f, f,. f1,SuPf infg

and lim f

are measurable.

2 n 12

n n n n n n

Proof: Define a function [J(x) = sup{f,f,....f}.
We will prove that {x | B(xj > o} is measurable. In fact,

X0 >a}=0 {x|fX)>a}

i=1

Since each f is measurable, each of the set {x | f (X) > o} is measurable

and therefore their union is also measurable. Hence, {x | @(x) > o} and

So F(X)

is measurable. In the same way, define the function m(x) = inf{f , f, ..., f
+. Now

1 2 n

n

since, m(x) < a iff f (X) < o for some i we have {x | m(X) < a}=
[]
i i=1

{x|f(X)<a}andsince{x|f(x)< o} is measurableon accountofthe

measurability
of f, we conclude that {x | m(x) < a} and so m(x) is measurable.

Define a function,
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M’'(x) =sup f (x) = sup{f,f,...,f}

n n 12n

We will now prove that the set,

{x ] B'(X) > a} is measurable for any real o.
Now,

{X| 2'X)>a} =

o0

(1 {x|f(xX)>a} is measurable, since each f is

measurable.

n n
n=1

Similarly, if we define m’(x) = inf

f (x), then
{XIm'Xx) <o} =
U {x|f(X)<a}
i=1 n
Therefore, measurabilityof f,
[

‘implies measurability of m’(x). Now as

|
lim f. = lim sup f = inf

{sup f, ¢

and
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n k|

nsz
the upper and lower limits are measurable.

Lastly, if the sequence is convergent, its limit is the common value of |im f,
and lim f and hence is measurable.

Definition: Let f and g be measurable functions. Then we define,
f*=Max(f, 0)

f = Max(-f, 0)

fvg=

f+g+|f-9g]2

, 1.e., Max(f, )

and f A g=
f+a-|f-q]|

2

, 1.e., min(f, g)

Theorem 10.7: Suppose f be a measurable function. Then, f and f are both
measurable functions.

Proof: Let us suppose that f > 0. Then we have,

f=fand f =0* .=10.1)

So in this case we have,

f= —f

f
Now, let us take f to be negative. Then,

+

f=Max(f,0)=0
f =Max(-f, 0 =—f ..(10.2)

Therefore on subtraction,
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f=f—f
In case f =0, then
" =0, f=0 ..(10.3)

Therefore,

f=f—f

Thus, for all f we have

f=f—f .(10.4)

Also, adding the components of Equation (10.1) we have,

f=|f|=f-f ..(10.5)
since, f is positive.

And from Equation (10.2) when f is negative we have,

Fef=0-f=—f=[f] ..(10.6)

In case f is zero, then

f+f=0+0=0=|f|..(10.7)

That is for all f, we have

+

|[f|=f-f ..(10.8)
Adding Equations (10.4) and (10.8) we have,

+

f+|f|=2f

+

—f=12(f|-f) ..(10.9)

Similarly on subtracting, we obtain
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_ f=12(f|-f) .(10.10)

Since, measurabilityof f implies themeasurabilityof | f |, it is obvious from

Equations (10.9) and (10.10) that f and f are measurable.
Theorem 10.8: If f and g are two measurable functions, thenfv gandf A g

are measurable.
Proof: We know that,

Now, measurability of f = measurability of | f|. Also if fand g are
measurable, then measurable.
f+g,

f — g are measurable. Hence, f v gand f A g are

Definition: Astatementissaid to hold almost everywherein E, if and onlyif
it holds everywhere in E except possiblyat a subset D of measure zero.

Examples:
1 Twofunctionsfand g definedon E are said to be equalalmost everywhere in E,

iff f(X) = g(x) everywhere except a subset D of E of measure zero.

2. Afunctiondefined on E is said to be continuous almost everywhere in E, if and
only if there exists a subset D of E of measure zero such that, f is continuous
ateverypointof E-D.

Theorem 10.9: (a) If f is a measurable function on the set E and E c E is

1
measurable set, then f is a measurable function on E,.

(b) If f is @ measurable function on each of the sets in a countable
collection

{E } of disjoint measurable sets, then f is measurable.

Proof:
(a) For any real o, we have {x € E; f(X)>a} ={x e E; f{(X) > a}n E.
The
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1 1
result follows as the set on the right hand side is measurable.

o0

(b) Write E = O E. Clearly, E, beingtheunion of measurablesetis measurable.
i:li
The result now follows, since for each real o, we have

E={xeEfX)>a}=U0EfX)>a}.

i:li

Theorem 10.10: Suppose f and g be anytwo functions, which are equal
almost everywhere in E. Iff is measurable then g is also measurable.
Proof: Sincefis measurable, for anyreal athe set {x|f(x) > a} is
measurable. Now, we have to show that the set {x | g(X) > o} is
measurable. For this, put
E={x]f(X)>a}

E={x]9()>aj

1

2
Consider the sets E, — E and E,— E . Since f = g almost everywhere,
2

thereforemeasures ofthesesetsarezero. Thatis, both of thesesetsare
measurable. Now,
E=[EU(E-E)]-(E-E)

1 2 1 1 2
=[EUE-E)N(E-E)

1 2 1 1 2
Since E , E — E and (E — E )°are measurable, therefore we get that E is
1 2 1 1 2 2

measurable. Hence, the theorem is proved.

Corollary: Let, {f }be a sequence of measurable functions such that

n

limf=
n
n—o

f almost everywhere. Then, f is a measurable function.
Proof: We have alreadyproved that if {f } is a sequence of measurable

n

functions

then lIM f,is measurable. Also, it is given that lIm f,=f aimost

everywhere.
n—»0 N—0

Therefore, using the above theorem it follows that f is measurable.
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Theorem 10.11: Characteristic function y is measurable if and only if A

is measurable.

Proof: Let A be measurable. Then,

(1
%a(X) =1

ifxeA
0 if

Xeg A ie,xeA

Hence, it is clear from the definition that domain of y, is AUA°which
ismeasurable due to the measurability of A. Therefore, we need to prove that

the set {x|x,(X) > o} is measurable for anyreal c.

Let o> 0. Then, {X | x(X)>a} = {X]x {X) =1}

= A(BY the definition of characteristic function)

But, A is given to be measurable. Hence for o > 0, the set {x] x (X) > o}
is measurable. Now, let us take o < 0. Then,
{X|x(X)>a} =AUA®

So {x | xX) > a} is measurable for a. < 0 also, since AUA®has been
proved to be measurable. Therefore if A is measurable, then y is also

measurable.
Conversely, let us suppose that yx (X) is measurable or the set {x] x (X) >
o} is measurable for any real a.. Let o > 0. Then,
Xl >ap={X[xx)=1}=A
Therefore, measurabilityof {x | x (X) > o} implies that of the set A for a>
0. Now consider o < 0.Then,
(X |5 (X)> ot = AUAC
Thus measurabilityof y (x) implies measurabilityof the set AUA°which

impliesthat the set A is measurable.
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Theorem 10.12: If a function f is continuous almost everywhere in E, then it
is measurable.

Proof:Asfis continuousalmosteverywhere in E, therefore there exists a subset
D of E with m*D =0 such that f is continuous at everypoint of theset C=E —
D. Toprovethatfis measurable, let cdenote anygiven real number.

It is sufficient to prove that the inverse image B = f*(a, o) = {X € E | f(X)
>a} oftheinterval(a., «) ismeasurable. Fordoingthis, let X denoteanarbitrary

pointin BNC.Then, f(x)>aand fis continuousat X. Hence, thereexists an open

interval U,
Let,

containing X such that f(y) > a holds true for every pointy of E~ U .

u="4 U
xeBNC X
Since x € ENU < B holds for everyx € B C, we have

BNCcENUcB

This implies,

B = (EnU) U (BND)

Asan opensubsetof R, U is measurable. Hence, E WU is measurable. On
theotherhand, sincem*(BND)<m*D =0, BnDisalsomeasurable. Thisimplies
that B is measurable. This completes the proof of the theorem.
Definition:Afunction ¢, defined on a measurable set E, is called simple if there
is afinite disjointclass {E ,E , ..., E } of measurable setsand a finite set {a.,

a,
1 2 n 1 2
..., a } of r.eal numbers such that,

(o,

f(x) =

ifxeE i1=12,..n

ifxg Ef,UE,U..UE,

Notes
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Thus,afunctionis simpleifitis measurableandtakesonlyafinitenumber
of differentvalues.

Thesimplestexampleof a simplefunction is thecharacteristicfunctiony,

ofa measurable set E.
Definition: A function is said to be a step function if, f(x) = C,
E <x < Efor

i1 i
some subdivision of [a, b] and some constants C . Clearly, a step function
isa
simple function.
Theorem 10.13: Every simple function ¢ on E is a linear combination of
characteristic functions of measurable subsets of E.
Proof: Let ¢ be a simple functionandc,c, ...,C

denote the non zero real

1 2 n
numbers in its image ¢(E). Foreachi =1, 2, ..., n
Let,

A={xeE:$x)=C }

Then we have,

Cixa :
On the other hand, if ¢(E) contains no non zero real number, then

¢ = 0 and is the characteristic function y, of the empty subset of E.

10.3.2 Approximation of Measurable Functions by
Sequence of Simple Functions

Definition:Afunctions : X —Y isasimple functionif therange of s isa finite

set. Ifsisasimplefunctionandif {a,...,a } istherangeofs, thenwe setE =

1 n i




st'{a}),i=1,2,..,n Thus, i

s(x) = 2, &% e(X)

i=1

This is known as the canonical representation of the simple function s.

A nonnegativesimplefunctionisasimplefunctioninwhichtherangeis
containedin
[0,00). In particular, simple functions only take on finite values.

Notes:

1.s is measurable if and only if each E, in the canonical representation is

2.

@
O
©

measurable.
If X=AUB and AnB = ¢, then s =1 =y + y is measurable irrespective of
whether or not A and B are measurable. So if A, B= ¢, then A, B=#

s({y}) for any y in the range of s. Therefore, in the canonical

representationwe have s(x)zz aixEi (x), wherethea, aremutuallydistinct and

the E, are mutuallydisjoint.
Theorem 10.14: If (X, M) is a measurablespace and f : X — [0, oo] iS
measurable, then there is a sequence {s } of simple measurable functions such
that,
Foreachx € X,0<s (x) <s (X) < ... < f(X).
For each x € X, s (X) = f(x) as n 1—) 0. 2
IfAc Xissuchthatf|Ais bournlded, thens |A— f|Auniformly.
Proof: Setn e N. For 0 <k < n2"we fix, n
F o =[k2™, (nk +1)2"). Then, F NF=¢fork=jand

n2n-1

n,k nj
k=0
I:n,k
=[0,n).
Define ¢ : [0, 0] > [0, o0) by
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(k2. ift ¢ Fwhere 0 <k <n2"
@, (t) =
|
n,k
n, ifn<t<ow

Then, each ¢ is Borel measurable
n

n2"-1

o (X)=D k2yF . -

(x) + ny[n, o] (x)
Claim: For each n we have,
on® <o ®

Note that,

Vvt €[0, «].
F = [k2™, (k +1)2")
nk

= [2k 27, 2(k + 1)270Y)
= [2k 27, 2(k + 1)2709) U[(2K + )20, (2k + 2)27)

—sup |s,(x) —f () | <sup [ @, (1) - t]

xeA te[OM]

=F U F

n+12k n+1,2k+1

Thus, if 0 <t < n, then Ik such thatt € F .

n,

Case 1:IfteF ,then, o (t)=k2"ando (t)=2k = ()= 2k2-
(n+1)=

oM.

Case2: Ifte F

n+1,2k n n+1 —(n+1) n+1

, then, ¢ (t) =k2"and ¢
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(1) =2k +1)2 ™D =g (t)
+2-01)> o (1),

n+1,2k+1 n
n+1 n n
If t > n, then ¢ (t) =n and ¢ (t) > n. This proves the claim.

n n+1
Also, note that for each t € [0, «] we have ¢ (t) <tand ¢ (t) > tasn —

o. If M >0, then ¢ (t) — t uniformly on [0, M], because whenever n > M
then, for all t € [0, M] < [0, n) we have, |(t) —t] =t — ¢(t) <2

Set s (x) = ¢ f(x). Then, s is a simple function. It is measurable and s (X)—

n n n

f(x)forall x € X. Furthermore, if M € R such that Vx € A we have f(x) <M,
then

sup |s,(x) —f (x) | <sup [ @, (1) —t|
xeh teloM]

<2"s0asM<n-—o o

10.3.3 Measurable Functions as nearly Continuous
Functions

Continuity and Derivability of Functions Defined by Means of
Integrals

If f €R [a,b], then function F on [a, b] given by

Foo = [ f

is welldefined, becausefor each x [a,b],
defined on [a, b]
f eR[a, x] and as such F(x) is uniquely
Wenow proceed to examine certain properties of this function F,
defined on [a,b].

Continuity of F and its Derivability
Theorem 10.15:If

f eR[a,b]
then the function F defined on [a, b] by

Notes
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F(x) = L f (t) dt ¥ x e[a,b] is continuous on [a, b] and if f is continuous at

a point c of [a, b], then F is derivable at c and F"’(c) = f{c).

Proof: Continuity: Iff eR [a, b] thenfisboundedon [a, b] andsois|f|. Let
M be the upper bound of | f |on [a, b]. For € >0, 36> 0 such that 0< M§ <
g,and ifx e[a,b], x+h €[a,b]and | h |< &, then

x+h X

Fc+h)| - F() = |,

ft)dt—|
f (tdt

x+h a

fOydt+[

f (t)dt

X+ hx ‘J.

f (t)dt

[ (1) | dt ‘

=<M|h|kMd<e

Hence, F is continuous on [a, b]

Derivability: For f continuous at ¢ [a,b], given € >0 3 6 > 0 such that
Ix—cl<d=|f(X)-f(c)|>d
andfors,te[a,b],s#t,c-d<s<c<t<c+3,

F(t)—F(s)_f(C)

- L oo
t—s t—se

<110 f©ldx<e,




t—ss
i.e., F’(c) =f(c).
Corollary: If f € R [a, b] then F(x) is continuous on [a, b] and if f is also
continuous on [a, b] then F(x) is derivable and F_ (x) = f(x) on [a, b].
The above theorem asserts that a continuous function is the derivative of
its integral. For this very reason the process of integration is viewedas an
inverse operation of differentiation. At the same time it reflects that the
process of differentiationmaybe viewedas the inverseoperation of integration.
A derivable functionf, ifit exists on adomain D, such that its derivative F '
equalstoagiven functionfon D, is calleda primitive of f on D. Theknowledge
of

the primitives helps to evaluate the integral j f. o

Example1: Forsin-tx, whichdenotestheinverseofthefunctionsinxin [0, 7/2],

note that

(sintx)’ =

Hence, ,

W1 —
=sintx, v x € [0, l]ﬂ

(This gives another wayof introducing the trigonometrical functions,
through sin x defined as the inverse function of sin-x and sin-* 1 = 7/2)

Besides continuity and derivability of the functions defined by means
of integrals we can examine various other properties, such as uniform

convergence of functional sequencesdefinedbymeans of integrals.

Example 2:Thesequence
a>0.

U
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ol+nt

converges uniformly to 0 on [0, a] where

Solution: Since V x €[0, a], a> 0,

dt <

X1dt<a

—>0asn— oo,

Io n2 n2

therefore, for € > 0 3 m N such that

<gVvVnzm >

and V x €[0, a].

58
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01+ nt

Hence,




converges uniformly to 0, on [0, a] where a > 0.

IO 1+n%t

Now, inview of thefundamentaltheorem, if G beanyotherfunctionsuch
that G’ =f besides F ' =fon (a, b), then F' =G ' gives that
(F-G)y=0
i.e., F = G is a constant function on (a, b).

Hence, every continuous function f admits primitives G which differ
from the function F only by an additive constant. Therefore, if we can find,
by any means, a primitive G of a continuous function f on an open interval

containing c and d, then

[ f=F)-F(©), d

- G(d) - G(c).

This provides ameansto evaluate | f g

interval containing ¢ and d.
when f is continuous on any open
Note: An independentapproach to definetheexponentialfunctione*isto

consider it as the unique solutiony of the equation.
X=Iy¢,fory>0

1t

Unless this solution is identified with e*let us denote it byexp (x).
Clearly exp (x) is non negative monotonically increasing on R and as x
—>—00, eXP

(X) > + 0and as x — + oo and exp (0) = 1. It follows that

dx 1 Orgyzy’
dy y dx
ie., (exp (X)) '=exp(x) VX eR.

Thus, the derivative of exp (—x). exp (x +y) with respect to x reduces

Notes
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to zero. So that exp (- x). exp (X +y) = exp (y), and on replacing x by — x and
y by x +y it gives

have
by
exp (X)exp (y) =exp(X+Yy), VX YyeR.

As the Taylor’s series for exp () is same as for e*v x € R, therefore, we

exp (X)) =e*VvxeR.

Obviouslytheinversefunctionof e, i.e., thenaturallogarithmlog x is defined

Iogx:fxm,VX>O.

1t

Various other results concerning real logarithm and exponential functions are
now simple consequences of the above analysis.

Theorem 10.16: If f has continuous derivative on (c, d) and a, b € (c, d),
then

b J.©
=f(b) —f (a).
Proof: LetP e [ [a,b]. Thenbymeanvaluetheoremonevery §.3 ¢,
such that
(Xr—l’ Xr)

f(x) —f(x )=1'(€) 3

r r-1r r

This gives,

> (&8,

1

n

=2{f ()~ (x 1)}
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= f(b) — f(a).
Since f’ € R [a, b], therefore, on letting ||P|| — 0 the result follows.

Corollary 1: If fis such that f 'exists on [a, b] and f ' € R [a, b], then

: T
=f(b) — f(a)
The proof is same as that of the above theorem.
Corollary2: Iff iscontinuouson[a, b] andf 'existsandisboundedandcontinuous
on(a, b), then

= f(b) - f(a)

Proof: From the theorem, for every c, d € (a, b),

= f(d) - f(c)

When fis continuouson[a, b] andc, d €[a, b] the limit of the right hand
side expression in Equation (4.12) exists as ¢ — a and d — b from above
or below as the case may be; and so, also the limit of the left hand side
expression exists. Hence the result.

If a,..., a are p points of discontinuity of f on (a, b), then on applying
1 p
Corollary 2to [a, a,], [a;, &,],-., [a,, b], we get an extension as

Corollary 3: Iffis continuous on [a, b] and fi exists andis bounded and

continuous on (a, b) exceptat a finite set of points, then

b J‘f'

= f(b) — f(a).

Notes

61




Notes

62

10.4 EGOROFF’S THEOREM

Theorem10.17 (Egoroff): Let(x, ) be ameasurespaceof finitemeasure, and
f : X— Rbeasequence of measurablefunctionsconvergentalmost everywhere
tof. Thenngiven anye> 0, there exists ameasurable subset A < X such that u(X
\ A) < ¢ and the sequence f converges uniformly to f on A.

Proof: First define

S
Bn,m:LI ||fk_f|<rﬁ_| k];

Fix m. For most x € X, f (x) converges to f(x), so there exists n such that,
| f(X) —f(x) | < I/mforallk>n,sb x e B . Thus, wesee {B }

%
k
X\ C, C being some set of measure zero.

nm

n,mn

Weconstruct the set A inductivelyas follows. Set A, = X \C. For each m >

0, since {A NB}—>A ,wehave u(A \B ) >
0, so we canchoose

m-1
n(m) suchthat
wA \B
m-1
)<t

m-1

m-1

n(m,m oM

Furthermore set,




Notes

Am =Am_1
A Bn(m),m

since Am @ (Am_1\Bn(m),m) =Am-1, we have

€

H(Am) > p(A ) -
m-1

su(X)-F-For _Fxpu(X)-e

2 4 oM

The sets A, are decreasing, so letting

A= "] An="]Bymm

m=1 m=1

We have, p (A) > p (X) —g, or p (X\A) <e. Finally, forx e A, x € B
for all m, implies that [f(x) ~ (x)| < 1/m whenever k > n(m). This e

condition is

uniform for all x € A.

10.5 LUSIN’S THEOREM

Egoroff’s theorem says that on a set of finite measure, almost everywhere
convergence of measurable functions to a finite limit is uniform convergence of
a set of small measure. Lusin’s theorem is a consequence of Egoroft’s theorem
and says that on a set of finite measure, any finite measurable function f can be
restricted to a compact set K of almost full measure to form a continuous
function.

Lemma: Let A R beameasurable set with m(A) <+oand €> 0. Thenthere
is compact set K < A with m(A\k) < &.

Proof: Weknow that, there isaclosed subset F of A with m(A\F) < &/2. Since

the sequence,
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F A[ - n, n] =F and m(F) < +oo, there is an n,such that
m(F\[-ng,ng1) <&/2. The desired compact set is F n[-ng, ng 1.

Theorem 10.18 (Lusin): Fix ameasurable set A R with m(A) <+oo, and let
f be a real valued measurable function with domain A. For any & > 0, there
is a compact set K < R with m(A\K) < ¢ such that the restriction of f to K is
continuous.

Proof: Let (V) be an enumeration of the open intervals with rational endpoints
in

R. Fix compact sets Kn < fH[Vp] and K’

c A\

f ~1[v,,] for each n so that
nm(A\ (KUK))<e/2". Now, for

K:=

(KuK’),m(A\K)<g.Givenx
n n n
eKandannWithf(x)e\r{q,x€o;:K'

and

fIONK]c V.

The above result is true in general settings. The
domain of f should have the property that sets of finite measure can be
approximatedfromtheinsidebycompact sets, and for the range, there should be
acountable collectionof opensetsV, such
that for each open set O and each y € O there is an n with yeV < O. This

is

known as the second Axiom of countability.

Corollary 1: Let A be a measurable set such that m(A) < «. Letf: A—>R

be measurable function and € > 0. Then there exists a step function h : R—>R

such that,

m(f-hl>¢)<e

Furthermore, if f is bounded then sup |h|< sup [f|.

Proof: Let K be suchthat f | K is continuousand m(Ax) < &. As K is compact, we
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know that K is bounded, say K < [-N, N]. Since f K is continuous, it isalso
uniform continuous. Thus, we mayfind 0 < 6 < e such that
t,seKand|t—-s|<d=|f(t)-1(s)|<e

Letn>d'and x =—-N + I i =0, ...,2Nn. Let S be the collection of

_ i .

indices such that there exists i € K suchthat [ x, x.,,) "K# 0.Forsuchi €S
we

may choose y € [x, X ]. We define the step function,
i i+l
h=1%
ieS
POV Xiy1)
Lets e K. Choose i =0, ..., 2Nm such that, x <s < x. Then
1
K N[Xj, Xj+1) " K=0/and |yi— S| < < 5. We get, —

In(s) - f(s)] = [f(yi) - f(s)I< e.

Thus,

m(lh—f|>¢)<m(A\K) <e.

Since h is constructed using the elements f(y ) we also get,
sup [ h(x) [<sup[f(x)|

Xel xeK

This implies the second assertion.

Corollary 2: Let Ac R be ameasurable set, f: A— R be ameasurable
function and £ > 0. Then there exists a continuous function h such that,
m(f-h|>¢g)<e

Moreover, we can choose h such that sup | h | <sup | f |pl

Proof: It suffices to show that for every simple function f = Zm r

1 X))

i=1 1

Notes
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we can find a continuous hwith u(|[f—h|>¢)<eand|h|<|f|.

It can be easily shown by induction that,

i )= ) [> Dei) < Dndfi—hil> i

Therefore, it is sufficient to consider fi =1, x;,1]7. Let, 0< 28 < x;,,— X,
We define,
§(t—x;) ifxi<t<x+&
h~g):| ifXi+0<t<Xj1—0
" 8 (Xiyg —) i Xiyg - < t<Xjuy
0 else

Note that hj5 < 1(; ;) IS continuous and that,
m(| hi‘g - 1[ Xj Xi+1) | > 0) <20

Let, 5 be such that 2 min; (Xj;1 — Xi). Then, we maydefine

m
h=> rihs

Hbance, we have

i+1
m

O 0
m(lf=h1>8 <3 m(ri s, ~ sl ®y<2m © <23

= m m m

For the second assertion, we note that | h | <| f|. Therefore, we also control
the sup-norm.

Check Your Progress
Define measurable space.
What is step function?
Define a simple function.
What is a primitive?

State Egoroff's theorem.

© ok~ w N e

6. State Lusin's theorem.

10.6 LET US SUM UP
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In this unit, you have learned that:

e Let X be a set and U be a c-algebra on X. The pair (X, U) is called a
measurable space.

e Thefunction fis calledmeasurableif theset{x: f(x)>a} is measurablefor every
reala.

¢ A necessaryand sufficient condition for measurability is that, {x| a < f(x)< b}
should be measurable for all a, b [including the case a = —w, b =+], as anyset
of this form can be written as the intersection of two sets, {x | f(x)
>a} N {x]|f(x) <Db}.

e As (a, o) is an open set, we can define a measurable function as a function f
defined on a measurable set E for which for every open set G in the real
number system, f-!(G) is a measurable set.

e For any real ¢ and two measurable real valued functions f and g, the four
functions f+c, cf, f+gand fg are measurable.

e If f is measurable, then | f | is also measurable. If f and g are two measurable

functions, thenf v g and f A g are measurable.

e If f isameasurable function on the set Eand E — E is measurable set,
1

then f is a measurable function on E,.

e If f isameasurable function on each of the sets in a countable collection
{E } of disjoint measurable sets, then f is measurable.

e Ifafunction f iscontinuousalmosteverywherein E, thenit is measurable.

e Every simple function ¢ on E is a linear combination of characteristic
functions of measurablesubsets of E.

o If X=AUB and AnB = ¢, then s =1 =y +  is measurable irrespective of
whether or not A and B are measurable. So if A, B = ¢, then A, B #s({y})

foranyy intherange of s. Therefore, inthecanonicalrepresentation
we have s(X)= Z aixEi (x), where the a are mutually distinct and the E,

are mutuallydisjoint.
e Aderivablefunction f, if exists on adomain D, such that its derivative F
equals to a given function f on D, is called a primitive of f on D.
e Let (x, n) be a measure space of finite measure, and f : X -> R ben a
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sequence of measurablefunctionsconvergent almosteverywhere to f. Then
givenanye > 0, there exists a measurable subset A — X such that u(X\A)

< ¢ and the sequence f

converges uniformly to f on A.

Fix a measurable set A < R with m(A) < +o0, and let f be a real valued
measurable function with domain A. For anye > 0, there is a compact set K
R with m(A\k) < e such that the restriction of f to K is continuous.

A sequence <f > of measurable functions is said to converge to f in measure if,
giverq € > 0, there is an N such that for all n > N we have

m{x | f (x) - f,(X) >} <e.

Asequence{f } of almosteverywherefinitevaluedmeasurablefunctionsis said
to benfundamental in measure, if for every € > 0,

m{x :| f,(x) = f,(X) |>€}) > 0asnand m — oo.

10.7 KEY WORDS

Measurable space: Let X beasetand U be a c-algebraon X. The pair
(X, U) is called a measurable space
Step function: Afunction is said to be astep functionif, f(x)=C, &

<X

< & for some subdivision of [a, b] and some constants C
i i-1

Finiteset: Afunctions: X —Y isasimplefunction if therange of s isa finite set.

10.8 QUESTIONS FOR REVIEW

Listtheequivalentformulations of measurablefunctions.

2 Statethe properties of measurable functions.

How can we approximate measurable functions by sequence of simple

functions?

4. Definemeasurablefunctionsas nearlycontinuousfunctions.

State Egoroft’stheorem.
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6 Whatisthesignificance of Lusin’stheorem?

7. Explaintheconceptofmeasurablefunctionsandtheirequivalentformulations.

8 Discusstheproperties of measurable functions.

9 Describe approximation of measurable functions bysequence of simple
functions.

10. Interpretmeasurablefunctions as nearlycontinuousfunctions.

11. Prove Egoroff’stheoremand Lusin’stheorem.
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New York: McGraw Hill.

Carothers, N. L. 2000. Real Analysis, 1st edition. UK: Cambridge
University Press.

Rudin, Walter. 1986. Real and Complex Analysis, 3rd edition. London:
McGraw- Hill Education— Europe.
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Ltd.

Royden, H. L. 1988. Real Analysis, 3rdedition. NewY ork: Macmillan
Publishing Company.
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10.10 ANSWERS TO CHECK YOUR
PROGRESS

1 Suppose X be a set and U be a s-algebra on X. The pair (X, U) is called

a measurablespace.
2. Afunction is said to be a step function if, f(x) = C,

€ <X < & forsome
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i i-1 i
subdivision of [a, b] and some constants C . Clearly, a step function is a

simple function.

. Afunctions: X —Y isasimple functionif therange of s is a finite set.
. Aderivable functionf, if it exists on adomain D, suchthat itsderivative F

equals to a given function f on D, is called a primitive of f on D.

. Let (X, w) be a measure space of finite measure, and f : X — R be a

n
sequence of measurable functions convergent almost everywhere to f. Then
givenanye >0, there exists a measurable subset A — X such that p(X\A)

< g and the sequence f converges uniformly to f on A.

. Fix a measurable set A — R with m(A) <+, and let f be a real valued

measurable function with domain A. For any € > 0, there is a compact set

K < Rwith m(A\k) < £ such that the restriction of f to K is continuous.




UNIT 11 CONVERGENCE
THEOREMS ON MEASURABLE
FUNCTIONS

STRUCTURE

11.1 Objectives

11.2 Introduction

11.3 Convergence theorems on Measurable Functions
11.3.1Almost Convergence Theorem
11.3.2Bounded Convergence Theorem
11.3.3Lebesgue Convergence Theorem

11.4 Let us sumup

11.5 Key Words

11.6 Questions for review

11.7 Suggested Readings and reference

11.8 Answers to Check Your Progress Questions

11.1 OBJECTIVES

After going through this unit, you will be able to:
e Explainconvergencetheorem

o Discussconvergencetheoremon measurable functions

11.2 INTRODUCTION

Convergence, in mathematics, property (exhibited by certain infinite
series and functions) of approaching a limit more and more closelyas an
argument (variable) of thefunction increases or decreases or as the numberof
termsof the seriesincreases.Forexample,thefunction y= 1/x convergestozero

as x increases. Althoughno finitevalue of x will causethevalue of y to actually
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become zero, the limiting value of y is zero because y can be made as
small as desired by choosing x large enough. The line y = 0 (the x-axis) is

called an asymptote of the function.

A measurable function is a function between two measurable spaces
such that the preimage of any measurable set is measurable, analogouslyto the
definition that a function between topological spaces is continuous if the
preimage of eachopenset isopen.In realanalysis,measurablefunctionsareused
in the definition of the Lebesgue integral. In probability theory, a
measurable function on a probabilityspace is known as a random variable.
Measurablefunctionsin measure theoryare analogousto continuous functions
in topology. Acontinuous function pulls back open sets to open sets, while a

measurablefunctionpullsbackmeasurable sets to measurable sets.

In this unit, you will study about the convergence theorem on

measurable functions in detail.

11.3 CONVERGENCE THEOREMS ON
MEASURABLE FUNCTIONS

Definition: Asequence <f > of measurable functions is said to converge to f
in measure if, given € > 0, there is an N such that for all n > N we have
m{x|f(xX)-f,(X)|>e}<e.

Theorem 11.1 F. Riesz: Let <f > be a sequence of measurable functions

that n

converges in measure to f. Then there is a subsequence <f >which converges

to
nk
f almost everywhere.

Proof: Since <f > is a sequence of measurable functions which converges
in
measure to f, for anypositive integer k there is an integer n, such that forn>n

we have
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m{x|fn(x)—f(x)|2—1}<1 -
2ok 2k

Let, Ek = {Xl |fnk

(x) -

£ >}

2k

0

Then if x ¢ O Ex, we have

k=i

I3
() -
£

fork>i

and so fn (x) —

f(x).

00 00

Hence, fa (x) — k

f(x) foranyx ¢ A= U U Eq
i=1 k=i

But,

UE
mAsm||_ kU i

Notes
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Hence the measure of A is zero.

Example 11.1: Asequence <f > which converges to zero in measure on [0,1]
but such that <f (x)> does not converge for any x in [0,1] can be constructed

as

follows:
Letn=k+2,0<k<2,andsetf(x)=1ifx e [ k2", (k+1)2"] and

n

f,(x) = 0 otherwise. Then, m{x || f,

)]>e} <>

and so, f,

— 0 in measure,

although for any x € [0, 1],nthe sequence <f (x)> has the valuel for
arbitrarily large values of n. So it does not converge.

Definition: A sequence {f } of almost everywhere finite valued
measurablenfunctions is said to be fundamental in measure, if for everye > 0,
mEx: [ fa(X)—fn(X)|>€}) > 0asnand m— oo.

Definitior::Asequence {f } of real valuedfunctions is called fundamental

almost

everywhere if there exists a set E, of measure zero su,ch that, if x ¢ E

ande >0,

then an integer n = n = (X, €) has the property that,
0 0
| fo (X) — fm (X) | < €, whenever n > n and m > n,,.

Definition: Asequence {f } of almost everywhere finite valued measurable
functions is ;aid to converge to the measurable function f almost uniformly if,
foreverye> 0, there existsameasurable set F such thatm(F) < eand such that
the sequence {f } converges to f uniformly on F.

Note: Egoroff’s theorem claims that on a set of finite measure,,

convergence almosteverywhereimpliesalmostuniformconvergence.
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Theorem 11.2: If {f } is a sequence of measurable functions which
converges to n

f almost uniformly, then {f } converges to f almost everywhere.

Proof: Let F be a measurable set such that m(F ) < 1/n and such that the

sequence

n n

{f } converges to funiformlyon F¢,n=1,2, ... . IfF=0C F,,

n n

1
thenm(F) < u(Fn) < N

n=1

converges to f(x).

so that m(F) = 0, and it is clear that, for x € F¢, {f (x)}

11.3.1 Almost Convergence Theorem

Theorem 11.3: Almost uniform convergence implies convergence in

measure.

Proof: If {f } converges to f almost uniformly, then for anytwo positive
numbers !

€ and 5 there exists a measurable set F such that m(F) < & such that | f (x) —
f(x) n

| < &, whenever x belongs to Feand n is sufficiently large.

Theorem11.4: If {f } converges in measure to f, then {f } is fundamental

in measure. Also, if {f } cofiverges in measure to g, then f = g almost
everywhere. "

Proof: The first claim of the theorem follows from the following

relation,

T =T 1= {0 T -0 |2 Jc 1T —F ()]

€

}
n m n 2 m 2

For proving the second claim, we have
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X|fX)—gX |=e}c{x:f,
(x) —
FO) =50 fx:|f

2 n

-9 )|

Since byappropriate selection of n, the measure of both sets on the

right can be made arbitrarilysmall, we have
m{x:[f()-9(x)[=&})=0

for every & > 0 which implies that f = g almost everywhere.

Theorem 11.5: If {f } is ar?equence of measurable functions which is

fundamental

in measure, then some subsequence{f }is almost uniformly
fundamental.

Proof: For anypositive integer k we can find an integer n(k ) such that if n > n(k

)

and m=>n (k) , then

M 10 (0 = (0 |2 1) < ©
ok 2k

We write,
ni=n (1), n2= (N1 +1) un(2),

<n<..,
3

ns=(n2+1)un(3), .., thenn,<n,

so that the sequence { fny } is certainly a subsequence of {kn}. If,
E={x:|f

(x) - f

x>~}
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nk+1 2k
and k < i <j, then for every x which does not belong to

ExU Ex 41U Exi2 UL, we have
*® 1

0

1

[ foy 00 = Fo; 00 1< 20 fy 00 = a0 [ < 20 =

[
m=i m=i 2 2

so that, in other words, the sequence { fn; }is uniformly fundamental on

E\(Ex WEk.1 V), since

m(E U E
U...) < Z
m(E
) < 0o
k k+1
m=k
m 2k—l

This completes the proof of the theorem.
Theorem 11.6: If {f } is asequence of measurablefunctionswhich is

fundamental in measure then there exists a measurable function f such that {f

} converges in

measure to f.

Proof:
We write

Notes
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f(x)= lim
k—o0
every e >0

fnk (x) for every x for which the limits exists and observe that, for

| f
x) -
fX)|[>e]lc{x:]|f
(x) - f

) | = E3o{x | f

n nooonk ) nk(X)-f(x) o

Note here that, the measure of the first term on the right hand side is
by hypothesis arbitrarily small if n and n, are sufficiently large. Also, the
measure of the second term also approaches 0 (as k—o0), since almost uniform
convergence impliesconvergence in measure. Hence, thetheorem follows.

Note: Convergence in measure does not essentially imply pointwise
convergence at anypoint.

11.3.2 Bounded Convergence Theorem

Theorem 11.7 Lebesgue bounded convergence theorem: Let <f > be a
n

sequenceofmeasurablefunctionsdefined on aset E offinitemeasureand suppose

that <f > isuniformlybounded, that is, there exists a real number M such that

[f(X)|<M,foralln e Nandallx € E.
lim f (x) =
f(X) for each X in E, then

f =1lim f

n—ow

E E

Proof: We will apply Egoroff’s theorem to prove this theorem.




Therefore, for a

given £ > 0, there is an N and a measurable set E c E g,uch that mE ¢< .

e/40,

Then we have,

we have

F(x) |<"—

2m(E)

[ f=[f1=1] (=) 1< [Ifa=1]
E E E E

fl+

Hence,

g g
< .mE)+ .2M
2m(E) 4M
€ €
< + =g -
2 2

[t

E
Thus, the theorem is proved.

andforn>Mandx € E
| fn (x) -

=I|fn_

Eo

Notes
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11.3.3 Lebesgue Convergence Theorem

Theorem 11.8 Lebesgue’s dominated convergence theorem: Let A ¢ A

(f ) be a sequence of measurable functions such that f (x) - f(x) (x € A). If

there
n n

exists a function g € L(u) on A such that,

| 0Ol < 9(x)
then,

lim [ f.du=[ fdu.

Proof: From | f ()| < g(x) we get f

Fatou’s lemma it follows that,
[,(f +g)dus<lim,[ (f,+0)
or,

[ fdp<lim,[ f,du

e LY(p). Asf
+ g=>0andf+g>0, by

Since g —f>0, in the sanme way
(- f)du<lim, |, (g - f,)du
So that,

~[, fdu<~lim, [ f,du

which is the same as

[ fdp>lim,| fdu —
Hence,

lim, [, f,dp=lim.[, fdp={Afdu

Check Your Progress
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1. When does a sequence <fn> of measurable functions is said to
converge?

2. State almost convergence theorem.

3. State Lebesgue bounded convergence theorem.

4. State Lebesgue’s criterion for integrability.

5. State monotone convergence theorem.

6. Write the condition for a measurable function to be integrable.

7. State Lebesgue’s dominated convergence theorem.

11.4 LET US SUM UP

o Asequence<f >of measurablefunctionsis said to convergetofin measure if,
givene>0, thereisan N such that for all n> N we have
m{x | f (x) —
fn(X)|=2e}<e.
o Let<f>bea sequence of measurable functions that converges in measure

to f. Then there is a subsequence <f

n

everywhere.
> which converges to f almost

¢ Since<f >isasequenceof measurablefunctionswhichconvergesinmeasure
n

to f, for any positive integer k there is an integer n, such that forn>n, )
we

have 1 1

m{X [fa ) —F () | >, } <, -

2

¢ Asequence<f >which convergesto zero in measureon [0,1] butsuchthat

<f (x)>
does not converge for any x in
[0,1] can be constructed as follows:

Letn=k+2'0<k<2' andsetf (xn) =1ifx e [ k27, (k+1)2"] and

n
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f (X) = 0 otherwise.
o Asequence{f } c;f almosteverywherefinitevaluedmeasurablefunctionsis said
to be fundamental in measunre, if for everye > 0,
mEX: | fa(X)—fn (X)|=€}) > 0asnand m — .
» A sequence {f } of real valued functions is called fundamental almost
everywhereif there exists a set E, of measure zero such that, ifx ¢ E

and

€ > 0, then an integer n = n = (X, €) has the property that,
0 0

| fo (X) — fm (X) | < €&, whenever n > n and m > n,,

» Asequence{f } of almosteverywherefinitevaluedmeasurablefunctionsis said
to converge to themeasurablefunction f almost uniformlyif, for every
€> 0, there exists ameasurable set F such that m(F) < € and such that the
sequence {f } convergesto"funiformlyon F°.

o Egoroff’stheoremclaimsthat on aset of finitemeasure,, convergencealmost
everywhereimpliesalmostuniformconvergence.

e If {f } isasequence of measurable functions which converges to f almost
uniformly, then {f }nconverges to f almost everywhere.

e LetF, beameasurable set such that m(F,) < 1/n and such that the seqeence

{f} converges to f uniformlyon F¢,n=1,2, ... . IfF=L F,,

n

" mE)<p(F)<

n=1 .

then

n n SO that m(F) =0, and it is clear that, forx € F,

{f ()} converges to f(x).
¢ Almostuniformconvergenceimpliesconvergencein measure.
e If{f } convergesto falmost uniformly,thenforanytwopositive numbers ¢
and d there exists anmeasurable set F such that m(F) < d such that | f (x)—
f(x) | < &, whenever x belongs to Feand n is sufficiently large.

o If{f } convergesin measuretof,then{f } isfundamentalin measure.Also,

n n
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if {f } converges in measure to g, then f = g almost everywhere.

Since byappropriate selection of n, the measure of both sets on the right can
be made arbitrarilysmall, we have

m{x:[f(x)-g(x)|=2&})=0

for every € > 0 which implies that f = g almost everywhere.

If{f } isa sequenceofmeasurablefunctionswhichisfundamentalinmeasure,

n

then some subsequence{f }is almost uniformly fundamental.

Foranypositive integerk we canfindan integern(k) suchthatifn> n(k) B

andm=>n (k) , then —

M 1 00— ) | 22 <
ok 2k

If{f } isasequenceofmeasurablefunctionswhichisfundamentalin measure

thenthereexists a’measurable functionf suchthat{f } convergesin measure
n

to f.

Lebesgue bounded convergence theorem: Let <f > be a sequence of
measurablefunctions defined on a set E of finitemeasure and supponse that
<f > is uniform lybounded, that is, there exists a real number M such that |
f(x)[<M,foralln e Nandallx € E.

Wewill apply Egoroft’s theorem to prove this theorem. Therefore, fora

givene> 0, thereisan N and a measurable set E — E such that mE °<¢/

4@, andforn>Mand x e E
0 0
we have 0

| fn () -

Then we have,

f)] <&
2m(E)
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[ t=[ f1=1] (fa=t) 1< ] Ifa=1]

E E E E
:J. |fn—
Eo
fl+
[ 1011
c E
0
£ —— mE)+°.2M
2m(E) 4M
e e
< +_=€
2 2
Hence,

[t ]f

E E
Thus, the theorem is proved.

e Lebesgue’sdominatedconvergencetheorem: Let A A , (f,) beasequence of
measurable functions suchnthat f (xX) — f(x) (x € A). If there exists a

function g € LY(w) on A such that,
[ £l <9(x)

11.5 KEY WORDS

e Measurable space: LetX beasetand U be ac-algebraon X. The pair
(X, U) is called a measurable space
e Stepfunction: Afunction is said to be a step function if, f(x)=C, §
<X

< & for some subdivision of [a, b] and some constants C
i i-1

o Simplefunction:Afunctions: X —Y isasimplefunctioniftherange of s
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is a finite set

11.6 QUESTION FOR REVIEW

Short Answer Questions

What do you understand byconvergence in measure?

What is the use of almost convergence theorem?

What is the significance of boundedconvergencetheorem?

Stategeneral Lebesgueintegral.

Writean application of Lebesgue convergencetheorem.

Discuss the properties of measurablefunctions.

Explain the convergencein measureand F. Riesz theorem for convergence in
measure.

Illustrate almostconvergencetheorem.

9. Illustrate Lebesgueintegral of aboundedfunctionoveraset of finitemeasure and

itsproperties.

10. State and prove bounded convergence theorem.

11. Describe Lebesguetheorem regardingpoints of discontinuities of Riemann

integrablefunctions.

12 State and prove monotone convergence theorem.

11.7 SUGGESTED READINGS AND
REFERENCES
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11.8 ANSWERS TO CHECK YOUR_
PROGRESS

QUESTIONS
A sequence<f >of measurablefunctionsis said to convergeto fin measure if,

given g > 0, there is an N such that for all n > N we have

m{x | f (x) —

fn(X)|>e}<e

Almostuniformconvergenceimpliesconvergence in measure.

Let <f > be a sequence of measurable functions defined on a set E of finite

measure and suppose that <f > is uniformlybounded, that is, there exists a real
number M such that | f (x) | <M, foralln e Nandall x € E.

lim f (x)=

n—o

f(x) for each X in E, thenj f
=lim fJ~

n—o

E

4. Letf:[a,b] — R. Then,fisRiemannintegrableifand onlyif fis bounded and

the set of discontinuities of f has measureO.

5 Let(f ) be non decreasing sequence of non negative measurable functions with
n

limitf.

Then, [ fdp=1lim |, f,dp,

nN—
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Ae A
6. A measurablefunction f issaidto be integrable over E if f* and f ~areboth

integrable over E. Inthis case we define,
[f=]f—]f

7. Let Ae A, (f)) be asequence of measurable functions such that f (x) —»

E E

f(x) (x € A). If there exists a function g € L*(u) on A such that,
(0] < 9) n

then, lim [ f.du=/ fdp.
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CHAPTER 12 PRODUCT MEASURES
METRIC OUTER MEASURES AND
HAUSDORFF MEASURE

STRUCTURE

12.1 Objective

12.2 introduction

12.3 product measures

12.4 Metric outer measures

12.5 Hausdorff measure

12.6 let us sumup

12.7 keywords

12.8 Questions for review

12.9 Suggested readings and references

12.10 Answers to check your progress

12.1 OBJECTIVE

In this unit we will describe the details about product measures .

12.2 INTRODUCTION

In mathematics a Hausdorff measure is a type of outer measure, named
for Felix Hausdorff, The zero-dimensional Hausdorff measure is the
number of points in the set (if the set is finite) or oo if the set is
infinite. In mathematics, in particular in measure theory, an outer
measure or exterior measure is a function defined on all subsets of a
given set with values in the extended real numbers satisfying some
additional technical conditions. A general theory of outer measures was
first introduced by Constantin Carathéodory to provide a basis for the
theory of measurable sets and countably

additive measures. Carathéodory's work on outer measures found many



file:///C:/wiki/Mathematics
file:///C:/wiki/Outer_measure
file:///C:/wiki/Felix_Hausdorff
file:///C:/wiki/Mathematics
file:///C:/wiki/Measure_theory
file:///C:/wiki/Function_(mathematics)
file:///C:/wiki/Set_(mathematics)
file:///C:/wiki/Extended_real_line
file:///C:/wiki/Measurable_set
file:///C:/wiki/Sigma_additive
file:///C:/wiki/Sigma_additive

applications in measure-theoretic set theory (outer measures are for
example used in the proof of the fundamental Carathéodory's extension
theorem), and was used in an essential way by Hausdorff to define a

dimension-like metric invariant now called Hausdorff dimension.

12.3 PRODUCT MEASURES

Definition 1.1. If X and Y are any two sets, their Cartesian product X x
Y is

thesetofallorderpairs{(x,y):xe X, ye Y}.

If Ac X, B cY, AxB c XxY is called a rectangle. Suppose (X, A), (X,
B) are measurable spaces. A measurable rectangle is a set of the form A
x B, A € A, Be B.Asetoftheform

Q=R1 U...URn,

where the Ri are disjoint measurable rectangles, is called an elementary
sets. We

denote this collection by E.

Exercise 1.1. Prove that the elementary sets form an algebra. That is, E is
closed under complementation and finite unions.

We shall denote by AxB the c—algebra generated by the measurable
rectangle which is the same as the o—algebra generated by the elementary

sets.

Product of finite number of measure spaces

Let (X1, A1, ul), ..., (Xn, An, un) be o-finite measure spaces. Then Al
x--+xAn =c({Al x---xAn|Ai € Ai for i=1,...,n}).

Using theorem 13.0.16 (applied n — 1 times), we can construct a unique
measure pl X---un on Al x---xAn that satisfies

(ul > -pun)(Al x---xAn)=p(Al)---u(An)

whenever Ai € Aifori=1, ..., n. Integrals of functions with respect to
pul x - - - un can be evaluated by repeated applications of Fubini’s
theorem

Notes
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Check your progress

1.Prove that B(R) x B(R) = B(R2).

12.4 METRIC OUTER MEASURES.

Let (X,d) be a metric space. We recall that, if E,F are non-empty subsets
of
X, the quantity d(E,F) = inf{d(x,y)|x € E,y € F}
Is the distance between E and F.
Definition 5.4 Let (X,d) be a metric space and p* be an outer measure on
X. We say that p*is a metric outer measure if
H(E UF) = p=(E) + p=(F)
for every non-empty E,F € X with d(E,F) > 0.

Theorem 5.8 Let (X,d) be a metric space and p* an outer measure on X.
Then, the measure W which is induced by p* on (X,Z.*) is a Borel measure
(i.e. all Borel sets in X are p*-measurable) if and only if p* is a metric outer
measure.
Proof: Suppose that all Borel sets in X are p*-measurable and take arbitrary
non-empty E,F € X with d(E,F) > 0. We consider r = d(E,F) and the open
set U = UxeeB(X;r). It is clear that E € U and F N U = @. Since U is p*-
measurable, we have # (EUF) = p*((EUF)NU) +p*((EUF)NU*) =
u*(E) + p*(F). Therefore, p*is a metric outer measure on X.
Now let p* be a metric outer measure and consider an open U € X. If Ais
a non-empty subset of U, we define
A, = {.1 € Ald(z,y) > % o foreveryy/e U.

It is obvious that An € An+1forall n. If x e A € U, there is r > 0 so that

B(x;r) € U and, if we take n € N so that » <, then x € An. Therefore,
Ant A

We define, now, B1 = Ai1and Bn = An\ An-1 for all n > 2 and have that

the sets B1,Ba,... are pairwise disjoint and that 4 = U1 B, If € A, and z

€ Bn+2, then z /€ An+1and there is some y /€ U so thatd(¥, 2) < 1. Then




- o) — dls 111
d(w,2) > dlx,y) = d(y. 2) > 5 — 525 = 5y, Therefore,

1

d An,s Bﬂ, : 2 AR
( +2) n(n+1) -

0

for every n. Since An+2 2 An U Bn+2, we find p*(An+2) > p*(An U Bns2) =
H*(An) + H*(Bn+2). By induction we get
px(B1) + pux(B3) + -+ + px(B2n+1) < px(A2n+1)

and p+(Bz2) + p#(Ba) + -+ + p*(B2n) < p*(Azn)
for all n. If at least one of the series p*(B1)+p*(Bs)+--- and p*(B2)+p*(Ba)+
.-+ diverges to +oo, then either p*(Azn+1) — +oo or p*(A2n) — +o0. Since the
sequence (*(An)) is increasing, we get that in both cases it diverges to +o.
Since, also p(An) < u*(A) for all n, we get that p*(An) T 1*(A). If both series
p*(B1)+p*(Bs)+:-- and p(B2)+p*(Ba)+--- converge, for every > 0 there
is 1 50 that>_ion+1 1 (Br) < €, Now,#"(4) < (An) + 35025 i (Bi) <
11*(An) + €. This implies that p#(An) 1 1*(A). Therefore, in any case,

He(An) 1 p*(A).

We consider an arbitrary E < X and we take A = ENU. Since EUU® C
U, we have that d(An,ENU®) > 0 for all n and, hence,
pH(E) 2w (AnU(ENU)) =1=(Ay) + p*(E N U°) for all n. Taking the limit as
n — +oo, we find

H*(E) > u*(E N U) + p*(E N U°).
We conclude that every U open in X is p*-measurable and, hence, every

Borel set in X is p*-measurable.

12.5 HAUSDORFF MEASURE.

Let (X,d) be a metric space. The diameter of a non-empty set E € X is
defined as diam(E) = sup{d(x,y)|x,y € E} and the diameter of the @ is
defined as diam(@) = 0.

We take an arbitrary ¢ > 0 and consider the collection Csof all subsets of
X of diameter not larger than 6. We, then, fix some a with 0 < a < +o0 and
consider the function z,¢: Cs— [0,+o0] defined by z,,s(E) = diam(E))” for

every E € Cs. We are, now, ready to apply Theorem 3.2 and define
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o0 ho 5(E) = inf ™ diam(E)" | B € U5 E; diam(E)) < 6 for
all j°.
j=1
We have that h*, s is an outer measure on X and we further define
h*«(E) = suph*s(E), EEX

0>0

We observe that, if 0 < d1 < d2, then the set whose infimum is h*,s1(E)
is included in the set whose infimum is h*,s2(E). Therefore, h*,s2(E) <

h*,s1(E) and, hence,
* — . ‘* . . C .
hnc(E) o]-—lfll)l—}— hu.(’J(E) ’ E = X

Theorem 5.9 Let (X,d) be a metric space and 0 < a < +oo. Then, % is a
metric outer measure on X.

Proof: We have h*,(@) = sups-o h*.,s(@) = 0, since h*, s is an outer measure
for every 6 > 0.

If E € F C X, then for every 6 > 0 we have h*,5(E) < hys*(F) < h*(F).
Taking the supremum of the left side, we find h*,(E) < h*,(F).

E) < oo px

j=1""a,8 (Eff) S

IfE = UISTES, then for every 6 > 0 we have s
P+j=1" h*,(E;) and, taking the supremum of the left side, we find 2} (E) <
P+j=10 h*a(Ej).

Therefore, h*, is an outer measure on X.

Now, take any E,F € X with d(E, F) > 0. If h7,(E'U F) = 400, then the

equalitys (E'U F) = hi, (E) + ki (F) is clearly true. We suppose that!: (£'U

F) < +o0 and, hence, h*,s(E U F) < +oo for every ¢ > 0. We take arbitrary
d < d(E,F) and an arbitrary covering £ U F € UiZT4; with diam(A;) < 6 for
every j. It is obvious that each Ajintersects at most one of the E and F. We
set Bj= Ajwhen Ajintersects E and Bj= @ otherwise "= and,
similarly,

Cj = Aj when A intersects F and Cj = @ otherwise. Then, £ € U1 B;
and F C UF%C) and, hence, "sE) < S i diam(By))* and hewsF) <
3057 (diam(Cy))®. Adding, we find a5 (B) + R s(F) < 3T (diam(Ay))”
and, taking the infimum of the right side, h*, s(E) + h*,s(F) < h*,s(EU F).
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Taking the limit as 6 — 0+ we find 7 (E) + 25 (F) < hi,(E U F) and, since
the opposite inequality is obvious, we conclude that

he(E) + hi(F) = hi(EUF),
Definition 5.5 Let (X,d) be a metric space and 0 < a < +o. We call the a-
dimensional Hausdorff outer measure on X and the measure h, on (X: xz)

is called the a-dimensional Hausdorff measure on X.

Proposition 5.3 Let (X,d) be a metric space, E a Borel setin X and let 0 <

01 < 02 < +o0. If haa(E) <+, then haa(E) = 0.

Proof: Since h*,1(E) = hu(E) < +oo, we have that.,.s(£) < +ocfor every

5> 0. We fix such a § > 0 and consider a covering? € U;=14; by subsets
of

X with diam(A)) < o for all j so that =1 diam( 4:) ™" < b, 5(B) +1 <
h*u(E) + 1.
Therefore,"azs(E) < 3077 gigm(A)™ < 00 Dt diam(45)"" <

(hi, (E) +1)8"*"" and, taking the limit as & — 0+, we find "4.(F) = 0-Hence,
h.2(E) = 0.
Proposition 5.4 If E is any Borel set in a metric space (X,d), there is an ao
€ [0,+o0] with the property that h,(E) = +oo for every a € (0,a0) and h,(E)
=0 for every o € (00,t®).
Proof: We consider various cases.

h«(E) = 0 for every a > 0. In this case we set ao= 0.

he(E) = +oo for every a > 0. We, now, set ap= +oo.

There are a1 and a2 in (0,+00) so that 0 < he1(E) and hee(E) < +oo.

Proposition 5.3 implies that a1 < az and that h,(E) = +o for every a €

(0,a1) and hu(E) = 0 for every a € (02,t®). We consider the set {a €
(0,+0)|h,(E) = +oo} and its supremum oo € [a1,02]. The same Proposition
5.3 implies that h,(E) = +oo for every a € (0,a0) and h(E) = 0 for every «
€ (00,o0).
Definition 5.6 If E is any Borel set in a metric space (X,d), the ao of
Proposition 5.4 is called the Hausdorff dimension of E and it is denoted
dimn(E)
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Check your progress

2.Proove that the following

Let (X,d) be a metric space and p* an outer measure on X. Then, the
measure i which is induced by p* on (X,X,*) is a Borel measure (i.e. all
Borel sets in X are p*-measurable) if and only if p* is a metric outer

measure.

12.6 LET US SUMUP

In this unit we discussed about product measures in detail. In this unit we

discussed about the Hausdorff measure and Metric outer measures.

12.7 KEYWORDS

Outer measure
Hausdorff dimension
lebesgue measure
Product measure

Measurable space

12.8 QUESTIONS FOR REVIEW

1.Prove that the elementary sets form an algebra. That is, E is closed

under complementation and finite unions.

Let (X,d) be a metric space and 0 < a < +oo. Then
Prove that

1 is a metric outer measure on X.

12.9 SUGGESTED READINGS AND
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12.10 ANSWERS TO CHECK YOUR_
PROGRESS

1. Please check section 12.3 for Question 1

2. check out section theorm 5.8 For answer to check your progress
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UNIT 13 LEBESGUE INTEGRAL OF
NONNEGATIVE MEASURABLE
FUNCTION

STRUCTURE

13.1 Objectives

13.2 Introduction

13.3 Lebesgue Integral of Nonnegative Measurable Function
13.3.1 Monotone Convergence Theorem

Fatou’s Lemma

13.4 General Lebesgue Integral
13.4.1 Lebesgue Convergence Theorem

13.5 Let us sum up

13.6 Key Words

13.7 Questions for review

13.8 Suggested Readings and references

13.9 Answers to check your progress

13.1 OBJECTIVES

After going through this unit, you will be able to:
e Understandwhat Lebesgue integral is
o Explain Lebesgueintegral of non-negative measurablefunction

¢ Discussgeneral Lebesgueintegral

13.2 INTRODUCTION

Lebesgue integration is an alternative wayof defining the integral in terms of
measure theory that is used to integratea muchbroaderclass of functions thanthe
Riemann integral or even the Riemann-Stieltjes integral. The idea behind the
Lebesgueintegral is that instead of approximatingthetotalareabydividingitinto

vertical strips, one approximates the total area by dividing it into horizontal
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strips. This corresponds to asking ‘for each y-value, how many x-values
produce this value?’ as opposed to asking* for each x-value, what y-value does
it produce?’

Because the Lebesgue integral is defined in a way that does not depend on the
structure of R, it is able to integrate many functions that cannot be integrated
otherwise. Furthermore, the Lebesgue integral can define the integral in a
completely abstract setting, givingriseto probabilitytheory.

Inthis unit you will studyabout Lebesgue integral, Lebesgue integral of non-

negativemeasurablefunctionandgeneral Lebesgueintegral.

13.3 LEBESGUE INTEGRAL OF
NONNEGATIVE MEASURABLE_
FUNCTION

In measuretheory, ameasurable function is defined as afunction between
two measurable spaces such that the pre-image of any measurable set is
measurable. Principally, in analysis, the measurable functions are the
Lebesgueintegral.

The Lebesgue integral of non-negative Lebesgue measurable functions
define the Lebesgueintegralforsimplefunctions.In addition, whenabounded
functionis defined on a Lebesgue measurable set E with m(E) < oo then

it is Lebesgue integrable.
Throughout this section we will be using the measure space (X, F, p).

Definition: Let s be a non negative F measurable simple function so that,

N

s= aX,

with disjoint F measurable sets A, ON A = X and a > 0. For any

E e F define the integral of f over E to be,

N
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le(s) = X an(ANE)

with the

conventionthatifa =0and u(A N E) =+ then 0 x (+o0)=0. So the area
under
s=0inRis zero.

Example 13.1: Consider ([0, 1], (1, p) . Define,

=" o i

X rational

X irrational

This is asimplefunctionwith A=Q n [0,1]e L and A theset of irrationals
1 0

in [0,1] which, as the complement of @ is in L. Thus, f is measurable

and
Lo (T)=1u( ) A[0, 1]) + 0p( 1€ MN[0, 1])
=0

since, the Lebesgue measure of a countable set is zero.

Lemmal: IfE,cE )

cE...areinFandE=[7

E, then,

limpE)=nE)

n—o0

and we say that we have an increasing sequence of sets.
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Proof: If there exists an n such that w(E ) = +o then E < E implies w(E)

= +00
n n

and the result follows.

0

Soassumethat w(E ) <+ooforalln>1.Then,E=E U LI (En\En1) isa

disjoint union. Note that E

c E implies that E = (E \E

1

n=2
) VE
, which is a
n-1 n
n n n-1
n-1
disjoint union. So u(E ) = w(E \E
)+ nE
). Because the measures are finite,
we can rearrange this as
nn-1
n-1
w(E \E
)=nE)-nE
). So,
nn-1

ME) =pE )+ 2HENE)

1 n=2

W(E) +1im Y
99




Notes

(n(E)-n(E))

n=1

(Bythe definition of infinite sum)

lim p(E=) .

N —

Theorem 13.1: Let s and t be two simple non
negative F measurable functions on (X, F, w) and

E,F eF.Then,
Lls)=cl(s)forallceR 2. 1(s+t)=1(s)+1(V.

E 3 Ifs<to&Ethenl(s)<I(t).IfFcEthenl(s)<1(s).
4 ,IfE,cE
cEc..andE=P

E then lim .. 1c(s) = I (s).

3 k=1 k k

Proof: As in the Lemma above write,

and

M

s=Y.aX,

i=1

MN

= > > aXC

ji=lj=1

N

t =::£:bj)(E3
MN

= 2.2 b XC;
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i=1j=1

with C=ArB e F. |

1 Note that cs=>"" ca XA

(S

and so,

I (CS) = Z Cai“( A.)

i=1

= Czaiu( A1) =clg (S)

i=1

2 Thens+t=Y">"

- ja i i

(a+b)XC
. So,
I (s+t) = Zzzﬂa:l +bj)“(Cij NE)
= 2. 2.au(C; NE)+2.2 bu(C; NE)
M (N
Yoy )

= 2aul [I(C,NE) |+ 2 byl | (C,NE) |
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= Dau(A NE)+ Y b;u(B; NE)

= 1e(s) + 1e()

3 Givenany1<i<M,1<j<N for which
C NnE # ¢ we have for any

xe C NE that
a =s(x) <t(x) :J_b . So,

I (s) = Zzaiu(cij NE)

i=1j=1

< Zzbju(cu NE)

i=1j=1

= I

4. Bymonotonicityof pwe have,

| 5) = 2 an(AnF)

< Zai wW(ANE)

i=1

= 1(s)

5. We know that if we,have.E,c EC E k=1
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lim  w(E)=u(E). Thus,

n—

c....andE=[P
E, then
lim1(s)e
k —o0 &
=lim aw(ANE) Do«
k—)ooi:1
M
= Zai limp(A NE,)
k >0
=Zaiu('°m E)

i=1

= 1e(s)
Definition: Iff: X — R* isanon negative F measurable function, E € F, then

the integral of f overE is

IE fdu=sup{l:(s):sisa simple F-measurable function, 0<s< f}

But, if E = X we need onlythat f is defined on some domain containing E.
Let I(f, E) denote the set,
{1 (s) : s is a simple F-measurable function, 0 <'s <
f} So the integral equals sup I(f, E).
Note: Theintegralexistsforallnonnegative F measurablefunctions,
though itmightbeinfinite.

If I e fdp = oo we say that the integral is defined.

Iff e fdp < oo we say that f is p-integrable or summable on E.

Notes
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Theorem 13.2: For a non negative, F measurable simple function t, we

have

Proof: Givenanysimple F measurablefunction, 0 cs<twehavel (s)< Bl (t)
byTheorem 13.1.

So Ig(t) is an upper bound for I(t, E) for which I etdu is the least of

all upper bounds.

Hence,

I etdp < IE(t)

Also, _[ etdu > Ie (s) forall simple F measurablefunction, 0 <s<tand
sois greater than I(s) for anyparticular s, namelys =t. Hence, I gldu > Ie (t

Example 13.2: If f =k, i.e., a constant, then J. efdu=1e( f) =ki(E).

Theorem 13.3: Consider that all sets are in F and all functions are non

negative and F measurable.

1 Forallc>0,
[ ecfdu=c| efdu
2 If0<g<honEthen,
[ cgdu<| chdu

3 IfEcEandf>0then,

[ efdu<|efdu

..(13.1)
104




Notes

Proof:

1. Ifc=0then both the right hand side and left hand side of Equation
(13.1) are 0. Assume ¢ > 0.

1
If 0 <s<cf isasimple F measurable functionthensois0<™ S <f.

Thus,
C
fdu>1
(1)1,
(s)
[e el c U )

By Theorem 13.1 ().
Hence, cj g fdu is an upper bound for I(cf, E) for which '[ ecfdu is the

least upper bound. Thus, ¢ f efdu > f ecfdp .

Starting with the observation that if 0 <s <fis asimple F

measurable function then so is 0 < c¢s < cf we obtain,

J. ecfdu > 1 (cs)

By the definition of | ¢
=cl (s) . By Theorem13.1(1).

L Hence, I E

(cf )du isan upper bound for I(f, E) for which J. E
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fdu is the

1
least upper bound. Hence cj E

(cf )du>

f < fdu or,I e (cf )duZCI c

fdu .
On combining both inequalities, we get the result.

Let 0 <s < g be asimple, F measurable function. Then, since g < h we

trivially have 0 <s <h in which case I(s) < '[ e hdp by the definition of
integralf E.

Thus, _[ e hdy is an upper bound for I(g, E). As in (1) we get

J Ehduz_[ eqdu .

Let0 <s<fbeasimple, F measurable function. Then,

I (s) <1 (s) By Theorem 4.31(3)

<[e fdu Bythe definitionof | .,

So I g, fdp isanupperboundfor I(f, E,) andso is greater thantheleast of all

upper bounds. Hence, I g, fdu zf g fdp.

Lemma 1: LetE € F, f> 0 is F measurable and_[ gfdu <oo. Set, A= {x e

E:
f(X) = +oo}. Then, AeF and p(A) = 0.




Proof: Since f is F measurable, therefore f *({}) € Fand so A=En f*
({0}) € F. Define,

sp0=""
if x €A

Yo if
XegA

Since AeF, we infer that s is an F measurable simple function.
Also, s <f

and so

nu(A) = 1:(s,) bydefinitionof I

<. fdu  bydefinitionof [_

<

by assumption Which is
true for all n > 1 means

that p(A)=0.

Lemma 2: If f is F measurable and non negative on E € F and w(E) =0,
then

J. efdu=0.

Proof: Let0 <s<f beasimple, F measurable function. So, 5= . " -

anX s

for
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somea >0,A €F.Thenl (s):zN
E n=

apn(A

M E ). But u is monotone which

n n

_means that (A NE) < w(E) =0 forall nandso |

(s) = 0 for all such simple functions. Hence, I(f, E)

={0}andso |_fdu=supI(f, E)=0,
Lemma 3: IngOandI egdu=0, thenu{x € E: g(x) >0}=0.

Proof: LetA={x e E: g(x) >0} and A= {x € E: g(x) > 1/n}.

Then, thesets A= Nn{x:g(X)>1/n} € Fbsatisfy AcAcAc

...with

A, .
1 2 3
ByLemmal, p(A)=lim,_,.. u(A,).Using,
- I
s(X)=n
X €A,

S
[O otherwise

S0 s < gon A we have,

Lumy=16)

ﬁ n A n

<[, giu




by the definition of |,

<[ gau

By Theorem 4.33(3)

=0 Byassumption

So u(A ) =0 for all nand hence w(A)=0._

Definition: If a property P holds on all points in E \ A for some set A with
u(A)= 0then P is said to hold almost everywhere (1) on E. Itis possible that
P holds on some of the points of A or that the set of points on which P does
not hold is non measurable. But, if u is a complete measure, such as the

Lebesgue-Stieltjesmeasure

u , thenthesituationis simpler.AssumethatapropertyP holdsalmosteverywhere

(w) on E. The definition says that the set of points, D say, on which P does
not hold, can be covered by a set of measure zero, i.e., there exists A: D
cAand

u(A) = 0.

However if p is complete then D will be measurable of measure zero.

Lemma4: Ifg>0and J. £9dp = 0 then g = 0 almost everywhere (1) on

E. Theorem 13.4: If g, h: X — R*are F measurable functionsand g < h

almost everywhere (p) then, J. egdu g'[ ehdp .

Proof: By assumption there exists a set D c E, of measure zero, such that for
all
x € [@/D we have g(x) < h(x). Let 0 <s < g be a simple, F measurable

function, writtenas

Notes
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N N
S= Zaix A, With | A=E
i=1 i=1

Define, a simple, F measurable function

(s(x) if
l 00 =g if
N => aX,
xgDxeD
N D¢

i=1
Then, for xe 2D we have s'(x) = s(X) < g(x) < h(x), while for xeD we
have s’(x) =0 < h(x). Thus, s"(x) < h(x) for all x € E. Note that, A= (A N D°)
U (A n D), adisjoint union in which case pu(A ) = wW(A N D) U WA N D)

W(A). ButA~D c D and so u(A n D) < (D) =0. Thus, w(A ) = u(A N
D°).

Hence,

| (s*) = 2ap(An D)

= Zai M( An)

= Ie(s)




So, Ie(s) = Ie(s*) < [_hdy bythe definition of integral | « . Thus, [ ¢ hdy is
an upper bound for 1 (g, E) while I e gdu is the least of all upper bounds for

I (g, E) . Hence, _[ ¢ hdu zf egdu.

Corollary: If g, h: X > R*are F measurable with g = h almost everywhere

()

on E then,

JEgdu=J ehdu .

Proof: By assumption there exists a set D — E of measure zero such that for
all xe @D we have g(x) = h(x). In particular, for these x we have g(x) <
h(x) andh(x) < g(x). So g < h almost everywhere (i) on E and h < g almost
everywhere

() on E. Hence, the result follows from two applications of Theorem
4.34.

So, a function may have its values changed on a set of measure zero
without changing the value of its integral. Particularly, we may assume that a

non negative integrablefunctionis finitevalued.

13.3.1 Monotone Convergence Theorem

The monotone convergence theorem is anyof a number of related theorems
proving the convergence of monotonic sequences (Ssequences that are
increasing or decreasing) thatarealso bounded. Informally, thetheoremsstate
that if a sequence is increasing and bounded above bya supremum, then the
sequence will converge to the supremum; in the same way, if a sequence is
decreasing and is bounded below byan infimum, it will converge to the

infimum.

Theorem 13.5 Monotone Convergence: Let (f) be non decreasing

sequence

Notes
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of non negative measurable functions with limit f.

Then,

[ fdu=lim| f.du,

n—o

Ae A

Proof: First, note that f (x) < f(x) so that

lim | f,dp < fdp

It is remained to prove the opposite inequality.

Forthisitis enough to show that for any
simple ¢ such that 0 < ¢ < f the following
inequalityholds,

[ pdu<lim{ fdu

n

Take 0 < ¢ < 1. Define,

A={xeA:f (X)=cep(X)}

Then A,

cA

n+l

and A=

A,. Observe that, n=

chcpdu = IAC(pdu = Iim_[A copdu

n—w,
<lim fdu<Ilim fdu
n—no-.. n n—o0

Pass to the

limitc—1.
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Theorem 13.6: Let f = f + f; f, f e LYw).
2 1 2

Then

[ fdw=[ fadu+ [ fodu.

fe Ll

and

Proof: First, letf , f > 0. If theyare simple then the result is trivial.

Otherwise,

12

choosemonotonicallyincreasingsequences (¢

)s(¢
) such that ¢

— fand
[0) —f.Thenforo=¢
+o,

n,2
n,1 1

n nl

n2
[Bdu = [ Fadp + [ oy

and the result follows from Theorem 4.35.
Iff,>0andf,<0, put
A={x:f(x)>0},B={x:f(x) <0}
Then, f, f and —f are non negative on A.
Hence, IA f1 =IAfA fdu+jA(— f2)du .
Similarly,

[L(f)du=] fdu=+ [ (-f)du

n,2

n,1

Notes
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The result follows from the additivity of integral.

Theorem 13.7: Let A € A, (f,) be a sequence of

non negative measurable functions and

f(x) =2 f(x),

n=1

XeA

then,

.[A fdu - ZIA f”du :

n=1

13.3.2 Fatou’s Lemma

Fatou’slemma establishes an inequality relatingthe Lebesgueintegral of the
limit inferior of a sequence of functions tothelimitinferiorofintegralsofthese
functions. The lemma is named after Pierre Fatou. Fatou’s lemma can be
used to prove the Fatou-Lebesgue theorem and Lebesgue’s dominated

convergence theorem.

Theorem 13.8 (Fatou’s Lemma): If (f ) is a sequence of non negative

measurable functionsdefinedalmosteverywhereand f(x)=lim,_,.f, (x) then

[ fdu<lim,_. [ f.du where AcA.

Proof: Put g, (x) = infy, f;(x).

Then, by definition of the lower limit lim,,..g,(x) = (x).
Moreover,g <g ,g <f . Bythe monotone convergence theorem,
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[ fdu=lim|[ g,dp=lim,[ g,du<lim,[ f.dp

Hence the theorem is proved.

13.4 GENERAL LEBESGUE INTEGRAL

Define the positive part f *and negative part f ~of a function as,

0

f=f+—f-
[f]=f*+f"
Definition: A measurable function f is said to be integrable over E if f *

and f -

are both integrable over E. In this case we define,
Je=fe-fe
Theorem 13.9: Let f and g be integrable over E. Then,

# Thefunctionf+gis integrable over E and J(F+o=]f+[g

E E E

® Iff <galmosteverywhere then, If sjg :

E E

@ If AandB aredisjoint measurable sets contained in E, then

Ji=[t4]1.
Proof: From the definition, it follows that the
functions f*, f -, g*, g ~are all integrable. If h=f
+g,thenh=(f*—f")+(g*—g )andhenceh
=(f"+g

*Y—(f-+g").Since, f*+g*andf-+ g -are
integrable therefore we then have,
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[hofl(fr+g7)-(f+g)]

E E

_f(fr+g7) -]

(f+o)

=Jt+fo-]f]g

That is,

[(f+g)

~(t-[H+( a0

E E E E

“[f+]g

Proof of (ii) follows from part (i) and the fact that the integral of a non

negativeintegrablefunction isnonnegative.

For the proof of (iii) we have,

[ f

:_ffx

AUB
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_[f4ff

A B

Now, f+ g isnot defined at points where f =o0and g=—w, and where f
=—o0 and g =oo. However, the set of such points must have measure equal
to 0,

since fand g are integrable. Hence, the integrability
and thevalue of independent of the choice of values

in these ambiguous cases.

[(f+0g)is

Theorem 13.10: Let f be a measurable function over E. Then f in
integrable over E iff | f | is integrable over E. Furthermore, if f is

integrable, then

IR

Proof: Iffisintegrablethenbothf*andf-areintegrable. But|f|=f*+ f . Hence,
integrabilityof f*andf- impliesthe integrabilityof|f]|.

Moreover, if f is integrable, then since f(x) < | f(x)| = f(x), the property

which states that if f < g almost everywhere then, J. fSJ. g implies that

[f<]ifl

.(4.17)

On the other hand since — f(x) < | f(x) |, we have

[f<[ifl...a18)

From Equations (4.17) and (4.18) we have,

[ <]t
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Conversely, suppose f is measurable and suppose | f | is integrable.
Since, 0 < f*(x) <| f(x)|, it follows that f * is integrable. Similarly, f ~is also

integrable and hence f is integrable.

Lemma: Let f be integrable. Then given € > 0, there exists 6 > 0 such that

| I f |< e whenever A is a measurable subset of E with mA < 8.

A

Proof: When f is non negative, the lemma is proved. Now for
arbitrarymeasurable function fwe havef=f*—f-. So, given € > 0, there exists

d,> 0 such that,

_ff+<§

2

A

when mA < §,. Similarly there exists 3,> 0 such that

_[f‘<§

2

A

when mA < 3,. Thus, when mA < 8 = min(3,, 3,), we have

| f<|fl fr+f°°

oo

Hence, the lemma is proved.

13.4.1 Lebesgue Convergence Theorem

Theorem 13.11 (Lebesgue’s dominated convergence theorem): Let A ¢
A,

(f) be a sequence of measurable functions such that f (x) — f(x) (x € A). If
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there
n n

exists a function g € L(u) on A such that,

O 59(%)
then,

lim [ f.du=[ fdp.

Proof: From | f ()] <g(x) we getf "

Fatou’s lemma it follows that,
[L(f +@)duslim, [ (, +g)
or,
[ fdu<lim,[ f.du

e LY (p). Asf
+ g=>0andf+g=>0, by

Since g — f > 0, in the same way

(- f)du<lim, [, (g - f,)du

So that,
~[, fdp<—lim,[, f.du
which is the same as

[ fdu>lim, | f,du

Hence,

lim, [, f,du=lim.[ fdu=] fdu

Check Your Progress
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1. Define integral of non negative function.

2. State monotone convergence theorem.

3. Give the statement of Fatou’s lemma.

4. Write the condition for a measurable function to be integrable.

5. State Lebesgue’s dominated convergence theorem.

13.5 LET US SUM UP

N

o Lets be anon negative F measurable simple

functionsothat, S=2.8 X,
i=1
with disjoint F measurable sets A, ONA=Xand a30.
ii=1 i i
N

o ForanyE e F define the integral of f over E to

be, 1¢(s) =Y auw(ANE)
with the conventi,on that if a = 0 and m(A n E) = +oo then 0 x (+o0) = 0,
So

theareaunders=0inRis zero.
° IfE
cEcE

...areinFand E=[P

n=1

E, then,
3

2

lim.u(E ) = u(E)

n—o0

and we say that we have an increasing sequence of sets.

o If there exists an n such that W(E ) =+ then E

c E implies WE) =+

and the result follows.
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e Iff: X —> R*is a non negative F
measurable function, E € F, thenthe

integral of foverE is
L fdu=sup{l:(s):sis a simple F-measurable function, 0 <'s

<f}
But, if E # X we need only that f is defined on some domain

containing E.

e LetI(f, E) denote the set,

{1 (s) :S is a simple F-
measurable function, 0 <s<f}
So the integral equals sup I(f,
E).

e Foranonnegative,F measurablesimplefunctiont,wehaveI gtdp = Ie

(1).

e So I(t) is an upper bound for I(t, E) for
whichj etdu is the least of all upper

bounds.

e If c=0then boththe right hand side and left
hand side of Equation (13.1) are 0.

Assume ¢ >0.

e Starting with the observation that if 0 <'s
<fis asimple F measurable function

then so is 0 < ¢s < cf we obtain,

I ecfdu > I¢ (cs)

By the definition of | ¢= cl(s)
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~

e Hence,
cf
c I £

du is an upper bound for I(f, E) for which

[efduis the

least upper bound. Hence

| cfdu.
c-[ £
(cf )du>
1
f fdu or,_[ e(cf )du >
o D°). Let 0 <s < g be asimple, F measurable

function. Then, since g < h we trivially have 0 <s < h in which case 1(s)

SJ. e hdu by the definition of integral f E.

o LetE € F, f>0is F measurable and I e fdp <oo, Set, A

={xeE:f(x)=
+o0}. Then, AeF and u(A) =0.

o If f is F measurable and non negative on E € F and w(E)
=0, then [ fdu

=0.

o LetA={xeE:g(x)>0}and A={x e E:g(x)>




1/n}.

Then, thesets A = IN{x:g(X)>1/n } e FbsatisfyA cA cA c..with

* =|

n=1

A,.

o Ifa property P holds on all points in E \ A for some set

A with w(A) = 0 then P is said to hold almost everywhere (i) on E. It is
possible that P holds on some of the points of A or that the set of points on
which P does not hold is non measurable. But, if u is atomplete measure,

suchas the Lebesgue- Stieltjesmeasure u , thenthesituationis simpler.

o Assume that a property P holds almost everywhere ()
on E. The definition says that the set of points, D say, on which P does not
hold, can be covered by a set of measure zero, i.e., there exists A: D c A

and u(A)=0.

o By assumption there existsa set D c E, of measure zero,
suchthat forall x
e /D we have g(x) < h(x). Let 0 <s < g be asimple, F measurable

function, written as

N N
s=>aX, with [|A=E
i1 i-1
o Then, for xe@D wehave s*(X) = s(X) < g(x) < h(x),
while for xeD wehave s*(x) = 0 < h(x). Thus, s*(x) < h(x) for all x € E.

Note that, A =(A
N D) U (A n D), a disjoint union in which case p(A ) = w(A N D% U (A
ND)y=wA).ButAnDc DandsouwAnD)<uD)=0. Thus, w(A)

= (A Nl

Notes
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e A measurablefunction f issaidto be integrableoverE if f*andf-are

both integrable over E. Inthis case we define,
ST
E E E

e Thefunctionf+gis integrable over E and I(f +9) :If +fg .

E E E

e Iff <galmosteverywhere then, If sjg .

E E

e If Aand B aredisjoint measurable sets contained in E, then

[i=]f+]f

AUB

13.6 KEY WORDS

Monotone convergencetheorem: The monotoneconvergence theorem is any
of a number of related theorems proving the convergence of monotonic
sequences that are also bounded. Informally, the theorems state that if a
sequenceis increasingandboundedabovebya supremum, thenthesequence will
converge to the supremum; in the same way, if a sequence is decreasing and is

boundedbelowbyan infimum, it will convergeto the infimum.

Fatou’s lemma: Fatou’s lemma establishes an inequality relating the
Lebesgue integral of the limit inferior of a sequence of functions to the limit

inferior ofintegrals of thesefunctions. The lemma is namedafter Pierre Fatou.

13.7 QUESTIONS FOR REVIEW

1 Defineintegral of nonnegativefunctions.

2 Where is monotone convergencetheorem applied?
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3. State Fatou’slemmawith an example.
4. Stategeneral Lebesgueintegral.
5. Writean application of Lebesgue convergence theorem.

6. Explainintegral ofnonnegativefunctionswithexamples.
Stateand provemonotone convergence theorem 8.Explain Fatou’slemmawith
thehelp of examples.
9.Discuss between general Lebesgue integral and Lebesgue convergence

theorem.
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13.9ANSWERS TO CHECK YOUR
PROGRESS

1 Lets be anon negative F measurable simple
zfunctionso that, S=>.& X,
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i=1
with disjoint F measurable sets A, ONA=Xanda>0. ForanyE € F
i i=1 i i

N

define the integral of f over E to be, 1. (s) = Y au( AN E) with the
conventionthatifa =0and u(A N E) =-+oo then 0’ (+90) = 0. So the area
unders=0inRis zero. !

2 Let (f) be non decreasing sequence of non

n

negative measurable functions withlimitf.

Then, [ fdp=1lim |, f,du,

N—o0

Ae A

3. ) If (f ) is a sequence of non negative measurable

functions defined almost

everywhere and f(x)=lim,_,,

AcA.

f,(x), then [, fdu<tim,__ [ fdu where

4. Ameasurablefunction f issaidto be integrable over E if f*andf-are

both integrable over E. Inthis case we define,

[t=]f—]f

5, Let Ac A, (f,) be asequence of measurable functions such that
f.(¥) —

f(x) (x € A). If there exists a function g € L*() on A such that,

[ f0OI<9(x)
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then, Iimj

A fdu :jA

fdu
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UNIT 14 LEBESGUE INTEGRAL:
RIEMANN INTEGRAL

STRUCTURE

14.1 Objectives
14.2 Introduction
14.3 Lebesgue Integral: Riemannintegral
14.3.1 Lebesgue Integral of a Bounded Function over a Set of
Finite Measure and its Properties
14.3.2 Lebesgue Integral as A Generalization of Riemann
Integral
14.4 let us sumup
14.5 keywords
14.6 Questions for review
14.7 Suggested readings and references
14.8 Answers to check your progress
14.9 Self Assesment Quizes and Exercises
14.10 Further Readings

14.1 OBJECTIVES

After going through this unit, you will be able to:
Discusstheshortcomings of Riemannintegral
Interpret Lebesgueintegral of aboundedfunctionoveraset of finitemeasure

Know Lebesgueintegral as a generalizationof Riemannintegral

14.2 INTRODUCTION

Riemann integration is the formulation of integration. Many other forms
of integration, notably Lebesgue integrals, are extensions of Riemann
integrals to larger classes of functions. The Riemann integral was developed
by Bernhard Riemann in 1854 and was, when invented, the first rigorous

definition of integration applicable to not necessarily continuous functions.
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The integral now has more significancethanthe anti-operation of the derivative.
There are now multiple integrals with increasingly greater range of use, yet
Riemann integration is sufficient for nearlyallphysicalproblems.

In this unit, you will study about the shortcomings of Riemann
integral, Lebesgueintegral of aboundedfunctionoveraset of finitemeasureand

Lebesgue integral asa generalization of Riemannintegral in detail.

14.3 LEBESGUE INTEGRAL: RIEMANN
INTEGRAL

WhiletheRiemannintegralissufficientinmostdailysituations,itfallsshorttomeet

our needsin quite a lot of importantways. First, the class of Riemannintegrable

functions is relatively small. Second, the Riemann integral does not have

n

satisfactory limit properties. That is, given a sequence of Riemann integrable

functions {f }

witha limit function f =lim f | it does not necessarilyfollowthatthelimit function

n—oo N

f is Riemann integrable. Third, all L,
under the Riemann integral.
spaces except for Loo fail to be complete

Example 12.1: Consider the sequence of functions {f } over the interval
E =10, 1].

[on
2 () = |
f ]

iflzn

2n—1 o

[O otherwise

Thelimitfunctionofthis sequenceissimplyf=0. Inthisexample, each

function in the sequence is integrable as is the limit function. However, the limit
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of the sequence of integrals is not equal to the integral of the limit of the

sequence. Thatis,

1lim [y () dx =132 0 = [, lim

fa (X) dx
n—o0 N—o0

Example 12.2: Consider the sequence of functions {d } over the interval

E=[0,1].

() (1 if

X e{r}
n 3

L 0 otherwise
where {r } is the set of the first n elements of some decided upon enumeration
of therationalnumbers.Eachfunctiond, isRiemannintegrablesince, it is

discontinuous

only at n points. Thelimit function D = lim 4

IS given by

(1 if
{D(X) =
0 if
X is rational

X isirrational
n—oon

This function, knows as the Dirichlet function, is discontinuous
everywhere and therefore not Riemann integrable. Another way of showing
that D(x) is not Riemann integrable is to take upper and lower sums, which

result in 1 andO, respectively.
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14.3.1 Lebesgue Integral of a Bounded Function
over a Set of Finite Measure and its Properties

The Lebesgue Integral of a Bounded Function

Y ounow know some of theshortcomingsofthe Riemannintegral. In particular,
we would like a function, which is 1 on a measurable set and 0 elsewhere, to
be integrableand haveits integral the measure of the set.

The function y glefined by,

(1xe E
X (x)=

E o xgE
is called the characteristic function on E. A linear

combination,
0(x) = 3aj xEj (X) is known as a simprle function if the sets E are

measurable.
i=1

i
This is not a unique representation for f. However, we note that a function f

is simple iff it is measurable and assumes only a finite number of values. If f

isa simple functionand[aj, ..., an] arethe set of non zero values of f, then
¢ = Yaiy aj» where Aj = {x| ¢ (x) = aj}. This representation for ¢ is known

as

the canonical representation and is characterized by the fact that the A;j’s are

disjoint and the a distinct and non zero. If ¢ vanishes outside a set of finite
measure, we define the integral of ¢pby

n

n

[0(x)dx = 3°aimAj when ¢ has the canonical representation ¢ = >aj XAj . We
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i=1

i=1
usuallyreduce the expression for this integral to [¢. If Eisanymeasurable
set, we define /¢ = - XE

E

Lemma: IfEq, Ep, ..., Ep are disjoint measurable subsets of E then every

linear

n

combination ¢ = SCiXEj with real coefficientsc ,c, ...,c is asimple

function

i=1

1 2 n

and
jd) =Y Cj mE; .
i=1

Proof: Itis clearthat ¢is a simple function. Leta ,a , ...,a
denote the non zero
12 n

real number in ¢(E). Foreachj=1, 2, ..., n let,
Aj=U Ej

ci=a |

Thenwe have, A = ¢—1 (@)={x| ¢(x)=a} and the canonical
rejpresenta{tion :

n

¢ =3aj xAjj =1
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Consequently, we obtain

Jo=>amA

j=1

n I 1
=Y ajml 0 Eil

=1

[ei=aj ]

n n
=D.ajj=1
>

ci=aj
ME;

(Additivity of measures applies, since E aredisjoint)

n
= Z CjmEjj=1
Hence, the theorem is proved.

Theorem12.1: Let ¢ and y be simple functions which vanish outside a set

of finitemeasure. Then

j (@ap+by)= afq) + bj\u , and, if ¢ >y almost everywhere, then J.(p > J.\y

Proof: Suppose {A } and {B } are the sets that occur in the canonical
representations of ¢ and y. Let A and B be the sets where ¢ and y are

Zero.
0

Thenthesets E obtained bytaking all theintersections A NB forma finite
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disjoint

k

collection of measurable sets, and we have

N

o= zak XEk

k=1

N
Y= Zbk XEk

k=1
and hence

N

ap+by=a axyg

+b Zbk XEk

=Y aa g,

+ bekXEk

k=1

N
k=1

k=1

N N
k=1
N

So,
= Z(aak + bby )XEk
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N
(@ + by) = D_(aay + bby )mE
k=1
N N
= D (aayx)mg,
k=1

+ Z(bbk) mEy

k=1

N N
=a Z ax mEg + bz bxmEg

k=1 k=1

= aJ.(I) + wa .
To prove the second statement, notice that
Jo-Jv=J@-w=o0

sincethe integral of a simplefunction whichis greaterthan or equal to zero

almost everywhere is non negativebythe definition of the integral.

Theorem 12.2: Let f be defined and bounded on a measurable set E with
mE

finite. For
inf j v (X)dx = sup jd)(x)dx

f<y ¢
f>y g
forall simplefunctions ¢and v, itis necessaryandsufficientthat f be
measurable.
Proof: Suppose that f isbounded by M and that f is measurable. Then the

sets
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are measurable, disjoint and have union E. Thus,

mEyx = mE

Thesimplefunctiondefinedby,

yn (="

k=—n

kXEk

(X)

and

6=

satisfy,
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(k =D)xg, (X)

on (X)<f(X) <wn(X)
Thus,

inf [ w(x)dx < [wn (x) dx = ) > km Ey

E E
and

k=-n

M n
sup j d(x)dx > j¢n (x) dx = _

whence,
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E E k =—n

Since, n is arbitrary we have
inf
f y(X)dx — sup I d(x)dx =0

E E
and the condition is sufficient. Consider nowthat,

inf [ w(x)dx = sup [ o(x)dx

waE
o<fE
Then givenn, there are simple functions ¢ and
such that
dn (X) < f (X) < yp (X) and

1
fwn &) dx — [on )lx <

n

Then, the functions

yx = infy

.. (12.2)
and ¢+ = sup ¢ are measurable and also ¢*(x) < f(X) < y*(x).

Now, the set A = {x | $*(x) < w*(x)} is the union of the sets

A= X1 9*(X) < >
1
-, -

1
But every A is contained in the set {X | ¢n (X) < wn (X) =7}, and the set

\

v
Equation (12.1) has measure less than v/n. Since n is arbitrary, mA = 0 and

SO
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mA = 0. Thus ¢* = y* except on a set of measure zero, and ¢+ =f except on
a set of measure zero. Thus f is measurable and the condition is also necessary.
Definition: If f is a bounded measurable function defined on a measurableset

E with finite mE, then we define the Lebesgue integral of f over E by,
[ £ () — inf [ w(x)dx

E E
for all simple functions y > f.

By Theorem 12.3, we can also define this as
j f (X)dx = supj d( x)dx

E E
for all simple functions ¢ <f.

In fact, we sometimeswrite the integral as .[ f . Also, if E =[a, b] we write

E

b

j Finstead of

il

[ab]

Theorem 12.3: If f and g are bounded measurable functions defined on a set E

of finitemeasure, then

.[ af:aj‘f.
(i)

jf+g:Jf+jg.

If f < g almost everywhere then .[ f

E

Notes
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0

®

If f = g almost everywhere then I f

IfA<f(x)<B, then AME <) | < BmE.

E
If A and B aredisjoint measurable sets of finite measure, then

[t=Ja+[t

AUB A B

Proof: We know that if y is simple function then so is ay. Hence,
j af:infj a\p:ainf_[ wzajf

y >f E y>f E E

E
which proves (i)
Forthe proof of (ii) let € denote anypositive real number. There are

simple functions ¢ <f, y > f, £ < g and n > g thatsatisfy

[ o00dx> [ f—e, [ woodx < 1
+ €,
E E E E

I&(x)dx>jg—s,jn(x)dx<_[g+s,

E E E E
Since, ¢ + E<f+g<wy +n,wehave

[(tro=[@+o=[o+[e>]1

+Ig—28

E E E E E




Jro<[wsn=Jv+[n<]t+[g

+ 2¢
E E E E E E

Since these hold true for every ¢ > 0, we have
[(fro=[t+]g

E E E
For the proof of (iii) it is sufficient to establish,

[@-
E

f)>0

For everysimple function y > g — f, we have y > 0 almost everywhere in
E. This means that,

_[\VZO

E
Hence, we obtain

[@-H= inf  [w()dx >0

..(12.2)
E y=(g-f) E
which establishes (iii)

In the same way, we can show that

j (g-f)= sup j\y(x)dx <0

...(12.3)
E v<(9-f)E
Therefore, from Equations (12.2) and (12.3) the result (iv) follows. In order to
prove (v) we are given that,

Notes
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A<f(X)<B
Apply (iv) to get,
[ fdx < [ Bdx=B [ dx

E E E
=BmE

That is,
[ f<BmE
E

- ki
Similarly, we can prove that
E

> AmE
Now, we prove (vi). Recall that,

XAUB=XATYAB

Therefore,
[

f(xa+xB)

IXAuBf= I

AuUB AuUB AuUB

-t |

fxs

AuUB AUB

AR

which proves the theorem.

14.3.2 Lebesgue Integral as A Generalization of

Riemann Integral
Any function which is Riemann integrable is Lebesgue integrable as well

and positively with the same values for the two integrals. Let us prove this
formally. First, we recall one definition of Riemannintegrability. This definition
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is different from most, but is easilyseen to be equivalent; it makes our proofs
a good deal simpler. Let f : A — R be a bounded function on a bounded
rectangle A < R™. Consider R-valued functions that are simplewith respectto a
rectangular partition of A, otherwise known as step functions. Step functions are
obviouslybothRiemann and Lebesgue integrable with the same values for the

integral. The lower and upper Riemannintegrals for f are,

1.(f)= sup“ | dA :step f/linction I < f}

U (f) =inf {I uda :stepAfunction u> f}

We always have L (f) < U (f); we say that f is Riemann integrable if
L(f)= U(f),andtheRiemannintegraloffisdefinedas L
(f)=u
(f)
Equivalently, f is Riemannintegrable when there exists sequence of

lower simple functions| <fand uppersimple functionsu > f, such that

lim | |n=L(f)=U(f)=|imjun_

N—o0 n—oo
%A A

Theorem 12.4 (Riemann Integrability Implies Lebesgue Integrability):
Let A R™be a bounded rectangle. If f : A— R is properlyRiemann integrable,
then itisalso Lebesgue integrable with respect to Lebesgue measure with the
same valuefortheintegral.

nn

Proof: Pick a sequence | and u,as above. Let L = sup

Inand U =infu.

IA
—
IA
c

Clearly, these are measurable functions,andwe have | < L

< u TakingnLebesgueintegral.and takinglimits,

lim

n—oo
fn<fL<fus<

lim
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n —0

Jun

Here, the limits on the two sides are the same, because the Riemann

and

Lebesgue integrals for | and u, coincide. So I(U —L)=0.ThenU=Lalmost

everywhere, and U or L equals f almost everywhere. Since Lebesgue measure

is complete, fis a Lebesgue measurable function.

Finally,the Lebesgueintegral f f , whichwe now know exists, is squeezed

inbetweenthetwolimits on the leftandtheright, thatbothequalthe Riemann

integral off.

Check Your Progress

1. List the shortcomings of Riemann integral.

2. Define Lebesgue integral of f over measurable set E.
3. What are upper and lower Riemann integrals for f ?
4. State Lebesgue bounded convergence theorem.

5. State Lebesgue's criterion for integrability.

14.4 SUMMARY

Anyfunctionwhich is Riemannintegrable is Lebesgueintegrableas well.

Let <f > be a sequence of measurable functions defined on a set E of finite

measure and suppose that <f > is uniformlybounded, that is, there exists a real
number M such tha't | f (x) | < M, for aIJn eNandallx € E. If

lim f (x)=

n—o

f(x) for each x in E, then.[ f

=lim f

n—ow

E

e Letf:[a,b] > R. Then,fisRiemannintegrableiff f isboundedandthe set of




Notes

discontinuities of f has measure0.

e Let s beanon negative F measurable simple function so that

N

S= Z ;X swith disjoint F measurable sets A, UNA =X and a > 0.

i=1

i i=1l i i
For any E € F, we define the integral of fover Eto

be,

N
le(s) = D au( AN E) with the convention that if a

i=1
w( Ajn E) = +oo then 0 x (+ o) = 0.
=0and
e Let(f)benondecreasing sequence of non negative measurable functions
with limit . Then [, fdu=tim{, t.dp,

AcA .

e If(f)isasequenceof non negative measurable functions defined almost

everywhere and f(x)= lim,_,., where A€A .
f,(x), then
[ fdm<lim,.. [ f.d

A A

e A measurable function f issaid to be integrable over Eif f*and f-are
both integrable over E.

o Let Ac A, (f,) be asequence of measurable
functions such that f (x) —>
f(x) (x € A). If there exists a function g € L*(u) on A such that, | f (x)| <,
g(x), then lim [ f.d@ =] fda.

14 5KEYWORDS

o Lebesgue integral: The integral of a non-negative function of a
single variable can be regarded, in the simplest case, as the area between
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the graph of that function and the x-axis.
. Bounded function: Afunction f defined on some set X with real or

complex values is called bounded, if the set of its values is bounded.

14.6 QUESTIONS FOR REVIEW

Whatis Lebesgueintegral?

1

2 Briefanote on Riemannintegral.

3 Whataretheshortcomings of Riemannintegral?
4

Givethe properties of Lebesgueintegral of a boundedfunctionovera set

of finitemeasure.

5 Define Lebesgueintegral as generalization of Riemannintegral.
6. Describeshortcomings of Riemannintegralusingillustrations.
7. Illustrate Lebesgueintegral of aboundedfunctionovera setof finite

measure and itsproperties.
8 Discuss Lebesgueintegral as generalization of Riemannintegral.Prove
that Reimannintegrabilityimplies Lebesgueintegrabilitywiththehelp of a

theorem.
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14.8 ANSWERS TO CHECK YOUR_
PROGRESS QUESTIONS

1 While the Riemann integral is sufficient in most
daily situations, it falls short to meet our needs in quite a lot of important ways.
First, the class of Riemann integrable functions is relatively small. Second, the
Riemann integral does not have satisfactory limit properties. That is, given a

sequence of Riemann

integrablefunctions{f }with a limit functionf =limf jtdoes not necessarily

n

n—oo N

follow that the limit function f is Riemann integrable. Third, all L, spaces

except for Loo fail to be complete underthe Riemannintegral.
2 If f is abounded measurable function defined
on a measurable set E with finite mE, then we define the Lebesgue integral of

f over E by,
[ f()dx — inf
I y(x)dx for all simple functions y > f.
E E

3 The lower and upper Riemann integrals for f
are,
L(f)= sup{j | dX :step function | < f}

A

U (f) =inf {I u dA :step function u > f}

A

4 Let <f > be a sequence of measurablefunctions

n
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definedon a set E of finite measureandsuppose that<f > is uniformlybounded,
that is, there exists a real number M such that | f (x) | <M, foralln e Nand all
X eE.

inf)=

n—o

f(X) for each X in E, thenI f

~ limf
J.n

nN—o0

E

5 Letf: [a, b] > R. Then, f is Riemann
integrableifand onlyif f is bounded and the set of discontinuities of f has

measure 0.

14.9 SELF ASSESSMENT QUESTIONS
AND EXERCISES

Short Answer Questions

9 What is Lebesgueintegral?

10. Briefanote on Riemannintegral.

1N Whataretheshortcomings of Riemannintegral?

12 Givethe propertiesof Lebesgueintegral of a boundedfunctionovera set
of finitemeasure.

13 Define Lebesgueintegral as generalization of Riemannintegral.

Long Answer Questions

1 Describeshortcomings of Riemannintegralusingillustrations.

2 Illustrate Lebesgueintegral of aboundedfunctionovera setof finite
measure and itsproperties.

3 Discuss Lebesgueintegral as generalization of Riemannintegral.

4 Provethat Reimannintegrabilityimplies Lebesgueintegrabilitywiththe

help of atheorem.
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